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Functions are a key abstraction in software
● They break down a problem into subproblems.
● Reusable functionality: they can be invoked from many points.
● Well-defined interface: expected inputs and produced outputs.
● They hide implementation details.

Problems of function calls
● Passing control to the function and returning.
● Passing parameters and receiving return values.
● Storing local variables during function execution.
● Using registers without interference with other functions.

Intel x86-64 solution
● Instructions, such as callq and retq
● Conventions, e.g., store the result in %rax

Procedures



Application Binary Interface

Conventions are needed!

Caller and callee must agree on:
● How to pass control.
● How to pass parameters and receive return values.
● How to preserve register values during function calls.
● How to align values in memory.

System V ABI
● Used by most Unix operating systems (Linux, BSD, macOS)
● Different conventions for different architectures (e.g, i386, x86-64)

By disassembling binary code, we will see many of these conventions in action 
for the x86-64 architecture.

The stack plays a fundamental role in function calls...



Case study: a stack

Pushing a value
● Decrement stack pointer %rsp
● Store new value at address pointed by %rsp

Example: pushq %rax is equivalent to
subq $8, %rsp

movq %rax, (%rsp)

Popping a value
● Read value at address pointed by %rsp
● Increment %rsp

Example: popq %rax is equivalent to
movq (%rsp), %rax

addq $8, %rsp

Note: Any stack element can be accessed with  %rsp

0xFFF7
(8-byte value)

0xFFEF
(8-byte value)

0x0018
(older value)

0x0010
(newest value)

0x0008

0x0000

%rsp →

po
p

pu
sh



Passing Control

Must save return address
● A function can be called from many points in the program.
● Recursive invocations are also possible.
● Where to return to?

○ A fixed return jump would not work: single return point.
○ Return address in a register: would be overwritten by nested calls.

Solution: use the stack!
● Last-In First-Out (LIFO) policy: pass control to the most recent caller.

● callq label is (more or less) equivalent to:
pushq %rip

jmp   label 

● retq is (more or less) equivalent to:
popq %rip



Passing Control: Disassembling

#include <stdio.h>

int sum(int x, int y, int *z) {

    return x + y + *z;

}

int main() {

    int z = 10;

    printf("%d\n", sum(1, 5, &z));

    return 0;

}

sum:

addl %esi, %edi

movl %edi, %eax

addl (%rdx), %eax

ret

.LC0:

.string "%d\n"

main:

subq $24, %rsp

movl $10, 12(%rsp)

leaq 12(%rsp), %rdx

movl $5, %esi

movl $1, %edi

call sum

movl %eax, %esi

leaq .LC0(%rip), %rdi

movl $0, %eax

call printf@PLT

movl $0, %eax

addq $24, %rsp

ret



Passing Parameters

Conventions
● First six integer/pointer arguments on  %rdi, %rsi, %rdx, %rcx, %r8, %r9
● Additional ones are pushed on the stack in reverse order as 8-byte words.
● The caller must also remove parameters from stack after the call.
● Parameters may be modified by the called function.

Accessing stack parameters
● At the beginning of a function, %rsp points to the return address.
● Stack parameters can be addressed as:  8(%rsp), 16(%rsp), …

It is common practice to:
● Backup the initial value of %rbp (used by the caller):  pushq %rbp
● Write %rsp (the current stack pointer) into %rbp:  movq %rsp, %rbp
● Use %rbp to access parameters on the stack: 16(%rbp) is the 7th param
● Restore the previous %rbp value at the end of the function: popq %rbp

(GCC optimizations avoid this use of %rbp, allowing its use as general register.)



Passing Parameters: Disassembling

#include <stdio.h>

int sum(int x1, int x2, int x3,

    int x4, int x5, int x6, int x7) {

    return x1 + x2 + x3 + x4 + 

           x5 + x6 + x7;

}

int main() {

    printf("%d\n", 

           sum(1, 2, 3, 4, 5, 6, 7));

    return 0;

}

sum:

addl %esi, %edi

addl %edi, %edx

addl %edx, %ecx

addl %r8d, %ecx

addl %r9d, %ecx

movl %ecx, %eax

addl 8(%rsp), %eax

ret

.LC0:

.string "%d\n"

main:

subq $8, %rsp

pushq $7

movl $6, %r9d

movl $5, %r8d

movl $4, %ecx

movl $3, %edx

movl $2, %esi

movl $1, %edi

call sum

addq $8, %rsp

movl %eax, %esi

leaq .LC0(%rip), %rdi

movl $0, %eax

call printf@PLT

movl $0, %eax

addq $8, %rsp

ret



Return Values and Registers

Return Values
● Integers or pointers: store return value in %eax
● Floating point: store return value in a floating-point register

Registers
● The caller must assume that %rax, %rdi, %rsi, %rdx, %rcx, %r8 to %r11 

may be changed by the callee (scratch registers / caller-save)
● Arithmetic flags are not preserved by function calls.
● The caller can assume that %rbx, %rbp, %rsp, and %r12 to %r15 will not 

change during function call.
○ The callee must save and restore them if necessary (callee-save).



Local Variables

When to use stack
Local variables must be allocated on the stack when:
● There are not enough registers.
● The address operator “&” is applied to a local variable.
● The variable is an array or a structure.

To allocate (uninitialized) local variables on the stack: subq $16, %rsp

Conventions
● Local variables can be allocated using any size (e.g., 1 byte for a char)
● They must be aligned at an address that is a multiple of their size.
● The stack pointer %rsp must be a multiple of 16 before calls to functions 

outside of the current module.
● The frame pointer %rbp is never changed after prologue / before epilogue.
● Local variables must be allocated immediately after callee-save registers.



Putting it all together

1. The caller prepares and starts the call
○ Push %rax, %rdi, %rsi, %rdx, %rcx, %r8 to %r11 if required after call
○ Save arguments on %rdi, %rsi, %rdx, %rcx, %r8, %r9 or into the stack
○ Execute callq (which pushes %rip and jumps to subroutine)

2. The callee prepares for execution
○ Push %rbx, %rbp, and %r12 to %r15 if modified during execution.
○ Decrement %rsp and allocate local variables on the stack.

3. The callee runs (possibly, invoking other functions)

4. The callee restores the state and returns
○ Increment %rsp to deallocate local variables from the stack.
○ Pop %rbx, %rbp, %rsp, and %r12 to %r15 (if pushed)
○ Execute retq (stores the return address into %rip)

5. The caller restores the state
○ Increment %rsp to deallocate arguments from stack.
○ Pop saved registers from stack.



Putting it all together: stack frames

Arguments 
(after 6th) Pushed by caller

Return address Pushed during callq

Saved registers Pushed by callee
(e.g., %rbp of caller)

Local variables Pushed by callee

%rsp →

%rbp →



Arrays in C

When we define  int x[10]; we obtain:
● A block of size (array size)*(element size) = 10*4 on the stack
● A variable x to access elements 0 through 9

○ x[9] gives the 10th element (the last one!)
○ *(x+9) is equivalent (pointer arithmetic multiplies by data size)

Expression (x in %rdx, i in %rcx) Type Assembly storing expression in %rax

x   int *   movq %rdx, %rax

x[0]   int   movl (%rdx), %eax

x[i]   int   movl (%rdx, %rcx, 4), %eax

&x[2]   int *   leaq 8(%rdx), %rax

x+i-1   int *   leaq -4(%rdx, %rcx, 4), %rax

*(x+i-3)   int   movl -12(%rdx, %rcx, 4), %eax

&x[i]-x   long   movq %rcx, %rax



Nested Arrays

When we define  int x[10][2]; in a C program, we obtain:
● A block of size (size1)*(size2)*(element size) = 10*2*4 on the stack
● A variable name x to access elements 0 through 19

○ x[0][0] gives the 1st element (at memory address x)
○ x[9][1] gives the 20th element (the last one)
○ x[i][j] gives the element at address x + (i*2 + j)*(element size)
○ *(x+i*2+j) is equivalent

Data is stored on the stack in row-major order:
● First, the 2 elements of row 0, x[0][0] and x[0][1]
● Then, the 2 elements of row 1, x[1][0] and x[1][1]
● And so on…

x[i][j] is the element at row i and column j.

Beware. Arrays are not pointers, but can be used similarly: www.c-faq.com/aryptr 

http://www.c-faq.com/aryptr


Case study: sum over array

#include <stdio.h>

int sum(int *a, int n) {

    int total = 0;

    for (int i = 0; i < n; i++) {

total += a[i];

    }

    return total;

}

int main() {

    int numbers[5] = {1, 2, 3, 4, 5};

    printf("%d\n", sum(numbers, 5));

    return 0;

}

sum:

movl $0, %edx

movl $0, %eax

jmp .L2

.L3:

movslq %edx, %rcx

addl (%rdi,%rcx,4), %eax

addl $1, %edx

.L2:

cmpl %esi, %edx

jl .L3

rep ret

.LC0:

.string "%d\n"

main:

subq $40, %rsp

movl $1, (%rsp)

movl $2, 4(%rsp)

movl $3, 8(%rsp)

movl $4, 12(%rsp)

movl $5, 16(%rsp)

movq %rsp, %rdi

movl $5, %esi

call sum

movl %eax, %esi

leaq .LC0(%rip), %rdi

movl $0, %eax

call printf@PLT

movl $0, %eax

addq $40, %rsp

ret

Compile to assembly using:  gcc -S -Og array_sum.c
● 40 bytes reserved on the stack. Why not 20? How many with numbers[4]?
● Try without -Og: What changes? (Note the use of 128 byte red zone.)



Case study: compare arrays

#include <stdio.h>

int array_cmp(int *x, int *y, int n) {

    for (int i = 0; i < n; i++) {

int cmp = x[i]-y[i];

if (cmp != 0) {

    return cmp;

}

    }

    return 0;

}

int main() {

    int x[5] = {1, 2, 3, 4, 5};

    int y[5] = {1, 2, 3, 4, 7};

    printf("%d\n", array_cmp(x, y, 5));

    return 0;

}

array_cmp:

movl $0, %ecx

.L2:

cmpl %edx, %ecx

jge .L5

movslq %ecx, %r8

movl (%rdi,%r8,4), %eax

subl (%rsi,%r8,4), %eax

jne .L1

addl $1, %ecx

jmp .L2

.L5:

movl $0, %eax

.L1:

rep ret

.LC0:

.string "%d\n"

main:

subq $72, %rsp

movl $1, 32(%rsp)

movl $2, 36(%rsp)

movl $3, 40(%rsp)

movl $4, 44(%rsp)

movl $5, 48(%rsp)

movl $1, (%rsp)

movl $2, 4(%rsp)

movl $3, 8(%rsp)

movl $4, 12(%rsp)

movl $7, 16(%rsp)

movq %rsp, %rsi

leaq 32(%rsp), %rdi

movl $5, %edx

call array_cmp

movl %eax, %esi

leaq .LC0(%rip), %rdi

movl $0, %eax

call printf@PLT

movl $0, %eax

addq $72, %rsp

ret

● Why does GCC allocate 72 bytes on the stack 
for 10 int?



Case study: row-column product

#include <stdio.h>

#define N 3

typedef int matrix[N][N];

static int matmul(matrix x, matrix y,

                  int i, int k) {

    int result = 0;

    for (int j = 0; j < N; j++) {

 result += x[i][j]*y[j][k];

    }

    return result;

}

int main() {

    int x[N][N] = {{1, 2, 3},

                   {4, 5, 6},

                   {7, 8, 9}};

    int y[N][N] = {{3, 0, 1},

                   {4, 2, 8},

                   {0, 1, 7}};

    printf("%d\n", matmul(x, y, 0, 1));

    return 0;

}

matmul:

movl $0, %r10d

movl $0, %eax

cmpl $2, %r10d

jg .L7

pushq %rbx

.L3: movslq %edx, %r8

leaq (%r8,%r8,2), %r9

leaq 0(,%r9,4), %r8

addq %rdi, %r8

movslq %r10d, %r11

leaq (%r11,%r11,2), %rbx

leaq 0(,%rbx,4), %r9

addq %rsi, %r9

movslq %ecx, %rbx

movl (%r9,%rbx,4), %r9d

imull (%r8,%r11,4), %r9d

addl %r9d, %eax

addl $1, %r10d

cmpl $2, %r10d

jle .L3

popq %rbx

ret

.L7: ret

main:

subq $104, %rsp

movl $1, 48(%rsp)

[...]

movl $9, 80(%rsp)

movl $3, (%rsp)

[...]

movl $7, 32(%rsp)

movq %rsp, %rsi

leaq 48(%rsp), %rdi

movl $1, %ecx

movl $0, %edx

call matmul

movl %eax, %esi

leaq .LC0(%rip), %rdi

movl $0, %eax

call printf@PLT

movl $0, %eax

addq $104, %rsp

ret

.LC0:

.string "%d\n"


