
CS356: Discussion #5
Debugging with GDB

Marco Paolieri (paolieri@usc.edu)

Schedule: Exams and Assignments

● Week 1: Binary Representation HW0 .
● Week 2: Integer Operations
● Week 3: Floating-Point Operations Data Lab 1 .
● Week 4: Assembly (Arithmetic Instruction)
● Week 5: Assembly (Debugging with GDB) Data Lab 2 .
● Week 6: Assembly (Function Calls)
● Week 7: Bomb Lab .(Oct. 1), Exam I (Oct. 4), Security Vulnerabilities
● Week 8: Memory Organization
● Week 9: Caching Attack Lab .
● Week 10: Virtual Memory
● Week 11: Dynamic Memory Allocation and Linking
● Week 12: Processor Organization and Exam II (Nov. 8) Cache Lab .
● Week 13: Processor Organization
● Week 14: Code Optimization and Thanksgiving
● Week 15: Cache Coherency and Review Allocation Lab .
● Week 16: Study Days and Final (Dec. 6)

Project #3

Goal: to defuse a “binary bomb” by figuring out the correct inputs.
● A sequence of 6 phases: each phase asks for an input from stdin.
● If the correct input is provided, the program proceeds to the next phase.
● If the wrong input is provided, the program terminates with an “explosion.”

Your goal is to complete all phases. You must figure out the correct inputs by
disassembling the binary program that is already in your GitHub repository.
● Complete the assignment inside the VM (must have internet connection).
● No need to submit your work: the binary program pings our server.

Score (see: http://bytes.usc.edu/cs356/assignments/bomblab.pdf)
● You gain 10 points for phases 1-4) and 15 points for phases 5-6 (total: 70).
● You lose 0.5 points if you cause an explosion in an unsolved phase.
● Your score is updated with these losses only after you complete the phase.
● You have 1 free explosion for phases 1-4 and 3 for phases 5-6.
● Completing a phase always gives you at least 40% of its points.

http://bytes.usc.edu/cs356/assignments/bomblab.pdf

gdb: The GNU Debugger

Goal: “To help you catch bugs in the act.”

How?
● Start your program (specifying inputs).
● Pause it when a condition is met (breakpoints).
● Examine the current state (inspect).
● Proceed step-by-step (understand).

Getting started
● Install gdb: apt-get install gdb (already present on your VM)
● Include debugging information: gcc -g hello.c -o hello
● Run gdb on your binary program:

$ gdb hello

Reading symbols from hello...done.

(gdb) _

For a fish, the archer fish is known to
shoot down bugs from low hanging plants
by spitting water at them.

— Jamie Guinan | https://goo.gl/VxsgbU

An interactive shell
● Autocomplete a command with tab
● Scroll history of previous commands with up / down
● Repeat the previous command with enter
● Commands can often be abbreviated with few letters (in red)
● Help about a command: (gdb) help <command>
● Open a file for debug: (gdb) file <binary file>
● Quit: (gdb) quit

Looking at the C code
● Show 10 lines around beginning of a function: (gdb) list func_name
● Show next 10 lines: (gdb) list
● Set how many lines to show: (gdb) set linesize 20

A bit tedious!
There is a more practical interface: gdb -tui, the “terminal user interface”

User Interface

User Interface Reloaded: gdb -tui

Enter commands

Scroll through
source code

Moving the focus
● By pressing up / down / left / right, you scroll the source sub-window
● To scroll the history or move along the command line, you must set the

focus on the other part of the screen: C-x o (press ctrl+x, release, press o)

Redrawing the screen
● If your program prints to stdout, it will interfere with the TUI interface
● In case, you can redraw the screen with C-l

Changing mode
● You can enable/disable the TUI mode with C-x a
● Or, you can select a mode:

○ (gdb) layout src Show source and commands
○ (gdb) layout asm Show assembly and commands
○ (gdb) layout split Show source, assembly, commands
○ (gdb) layout regs Show registers

A few tips

Layouts

Breakpoints
● Add at current location: (gdb) break
● Add at the beginning of a function: (gdb) break func_name
● Add at a specific line of a source file: (gdb) break hello.c:5
● Add at a specific line of current file: (gdb) break 5
● List all breakpoints: (gdb) info breakpoints
● Delete a breakpoint: (gdb) delete <breakpoint #>
● Disable/enable breakpoint: (gdb) disable <#> and (gdb) enable <#>

Controlling the execution
● Run a program from start, until first breakpoint: (gdb) run <args>
● Advance your program execution manually

○ Continue to the next line, executing subroutines: (gdb) next
○ Continue to the next line, stepping into subroutines: (gdb) step

● Run until the next breakpoint: (gdb) continue
● Run until the end of the function and print return value: (gdb) finish

Breakpoints and Control Flow

Inspecting Data

Registers: (gdb) info registers
Stack: (gdb) info stack and (gdb) info frame

Memory
● Print 1 byte at 0x12345 as unsigned int: (gdb) x/1ub 0x12345
● Print 2 words above stack pointer as hex: (gdb) x/2xw $sp
● Print string at memory address contained in %rdi: (gdb) x/s $rdi

Variables
● Print an expression: (gdb) print a/b+3.0*func_name(3)
● In hexadecimal: (gdb) print/x var_name
● Display an expression after every step: (gdb) display var_name

Pausing on variable or condition changes
● Add a watchpoint for a variable (current scope): (gdb) watch var_name

Pausing at a line on given conditions
● Add a conditional breakpoint: (gdb) break 8 if x > y

Disassembling binary code

When source code is missing...

● List all the strings in a binary file using: strings objfile

● Print the symbol table: objdump -t objfile
○ Names of all functions and global variables in objfile
○ Example:

0000000000400ab6 g F .text 0000000000000064 riddle_2

Meaning: a global Function in section .text with name riddle_2

● Debugging with gdb (use layout asm in gdb -tui)
○ Print the assembly of a function: (gdb) disassemble <func>
○ Breakpoint at a given address: (gdb) break *<addr>
○ Next/step one assembly instruction at a time: (gdb) ni and si
○ Jump to a given address: (gdb) jump *<addr>
○ Print the string at a given address: (gdb) x/s <addr>

Getting started with the assignment

Disassemble and step through main
● Open gdb -tui and set layout asm
● Load the binary file: (gdb) file riddle
● Set a breakpoint on main: (gdb) b main
● Start the program: (gdb) run
● Look around and advance with ni and si

○ Can you find where inputs are read from stdin?
○ Can you find the calls to riddle_1 and riddle_2?
○ Can you figure out their input parameters?

Remember
● Disassemble a function with (gdb) disas func_name
● Redraw the screen with Ctrl-l
● Print the string at the address in %rdi using: (gdb) x/s $rdi

Today: an easier problem

Download from: http://bytes.usc.edu/cs356/labs/riddle.zip

Two-Phases
● The main program reads two strings from stdin.
● The strings are validated by calling functions riddle_1 and riddle_2

$./riddle

To continue, tell me: how is an orange like a bell?

I know you can Google it, but don't.

<enter correct answer here>

Very well then. Tell me the ages of my three children.

Hint 1: If you multiply their ages, the product is 36.

Hint 2: If you add up their ages, it is the number of

 my neighbor's house.

Hint 3: The oldest one is in fourth grade.

<enter three numbers here>

Sorry, you failed to complete the riddle challenge.

http://bytes.usc.edu/cs356/labs/riddle.zip

Riddle 1

Understanding
● Which functions are called by riddle_1?
● Which parameters are passed?
● Which output values are used afterward?
● Jumps? Conditional jumps?

(gdb) disas riddle_1

Dump of assembler code for function riddle_1:

 0x0000000000400a30 <+0>: sub $0x8,%rsp

 0x0000000000400a34 <+4>: mov $0x400dd0,%esi

 0x0000000000400a39 <+9>: callq 0x4009c9 <strings_not_equal>

 0x0000000000400a3e <+14>: test %eax,%eax

 0x0000000000400a40 <+16>: je 0x400a47 <riddle_1+23>

 0x0000000000400a42 <+18>: callq 0x400891 <explode_bomb>

 0x0000000000400a47 <+23>: add $0x8,%rsp

 0x0000000000400a4b <+27>: retq

End of assembler dump.

Riddle 2

 0x0000000000400a79 <+0>: sub $0x18,%rsp

 0x0000000000400a7d <+4>: lea 0x4(%rsp),%rsi

 0x0000000000400a82 <+9>: callq 0x400a4c <read_three_numbers>

 0x0000000000400a87 <+14>: mov 0x4(%rsp),%eax

 0x0000000000400a8b <+18>: test %eax,%eax

 0x0000000000400a8d <+20>: jns 0x400a94 <riddle_2+27>

 0x0000000000400a8f <+22>: callq 0x400891 <explode_bomb>

 0x0000000000400a94 <+27>: cmp $0x2,%eax

 0x0000000000400a97 <+30>: je 0x400a9e <riddle_2+37>

 0x0000000000400a99 <+32>: callq 0x400891 <explode_bomb>

 0x0000000000400a9e <+37>: cmpl $0x2,0x8(%rsp)

 0x0000000000400aa3 <+42>: je 0x400aaa <riddle_2+49>

 0x0000000000400aa5 <+44>: callq 0x400891 <explode_bomb>

 0x0000000000400aaa <+49>: cmpl $0x9,0xc(%rsp)

 0x0000000000400aaf <+54>: je 0x400ab6 <riddle_2+61>

 0x0000000000400ab1 <+56>: callq 0x400891 <explode_bomb>

 0x0000000000400ab6 <+61>: add $0x18,%rsp

 0x0000000000400aba <+65>: retq

