
CS356: Discussion #3
Floating-Point Operations

Marco Paolieri (paolieri@usc.edu)

Schedule: Exams and Assignments

● Week 1: Binary Representation HW0 .
● Week 2: Integer Operations
● Week 3: Floating-Point Operations Data Lab 1 .
● Week 4: Assembly
● Week 5: Assembly Data Lab 2 .
● Week 6: Assembly Bomb Lab .
● Week 7: Exam I (Oct. 2) and Security Vulnerabilities
● Week 8: Memory Organization
● Week 9: Caching Attack Lab .
● Week 10: Virtual Memory
● Week 11: Dynamic Memory Allocation and Linking
● Week 12: Processor Organization and Exam II (Nov. 8) Cache Lab .
● Week 13: Processor Organization
● Week 14: Code Optimization and Thanksgiving
● Week 15: Cache Coherency and Review Allocation Lab .
● Week 16: Study Days and Final (Dec. 6)

Data Lab 2

● Deadline: Monday Sep. 17th, 2018 at 11:59pm PDT
● Steps

○ Read the instructions at
http://bytes.usc.edu/cs356/assignments/datalab-2.pdf

○ You already cloned your class repository inside the VM
$ git clone git@github.com:usc-csci356-fall2018/hw-username.git

○ Now, you need to pull the new assignment
$ cd hw-username; git pull; cd proj-2

○ Inside the file bits.c, complete the body of the functions byteSwap,
ezThreeFourths, float_abs, float_half, float_f2i

○ Check violations (./dlc bits.c), correctness (make; ./btest) and
your final score (./driver.pl)

○ Commit, push, submit full commit hash at
http://bytes.usc.edu/cs356/assignments

Data Lab 2: What to implement

Integer Problems: Only 1-byte constants (0xFA), no loops (for, while),
no conditionals (if), no macros (INT_MAX), no comparisons (x==y, x>y), no
unsigned int, no operators - && ||, only ! ~ & | ^ + << >>

● int byteSwap(int x, int n, int m): swap bytes n and m

● int ezThreeFourths(int x): return x*3/4 (beware of rounding)

Floating-point Problems: 4-byte constants (0x12345678), loops (for, while),
conditionals (if), comparisons (x==y, x>y), operators - && ||,
but no macros (INT_MAX), no float types or operations.

The unsigned input and output are the bit-level equivalent of 32-bit floats

● unsigned float_abs(unsigned x): return abs(f) (NaNs unchanged)

● unsigned float_half(unsigned x): return f/2 (NaNs unchanged)

● int float_f2i(unsigned x): return (int)f
○ For x out of range (including NaN and infinity), return 0x80000000

Exercise: Reset Bytes

Write a function reset_bytes(int x, int n, int m) that resets bytes of x
at positions n and m (possible input positions: 0, 1, 2, 3) using only <<, ~, &

#include <stdio.h>

int reset_bytes(int x, int n, int m) {

 int reset_n = ~(0xFF << (n << 3)); // shift 0xFF by n*8 bits

 int reset_m = ~(0xFF << (m << 3)); // shift 0xFF by m*8 bits

 return x & reset_n & reset_m;

}

int main() {

 printf("%08X [DD0000AA]\n", reset_bytes(0xDDCCBBAA,1,2));

 printf("%08X [00CCBBAA]\n", reset_bytes(0xDDCCBBAA,3,3));

 printf("%08X [DD00BB00]\n", reset_bytes(0xDDCCBBAA,2,0));

}

Exercise: Multiply using shifts

Write a function void mult(int x) that multiplies x
● by 6, using 2 shifts and 1 add/sub;
● by 31, using 1 shifts and 1 add/sub;
● by -6, using 2 shifts and 1 add/sub;
● by 55, using 2 shifts and 2 add/sub.

#include <stdio.h>

static void mult(int x) { printf("\nx = %d\n", x);

 printf(" 6 * x = (8-2) * x = %d\n", (x << 3) - (x << 1));

 printf("31 * x = (32-1) * x = %d\n", (x << 5) - x);

 printf("-6 * x = (2-8) * x = %d\n", (x << 1) - (x << 3));

 printf("55 * x = (64-8-1) * x = %d\n", (x << 6)-(x << 3)-x);

}

int main() {

 mult(0); mult(1); mult(-1); mult(10); mult(-100); mult(7);

}

Dividing Two’s-Complement by Powers of 2

● x / 2 k when x ⩾ 0: x >> k
● x / 2 k when x < 0: (x + (1 << k) - 1) >> k

○ Consider (-3)/2 with signed char (1 byte)
○ 0xFD >> 1 gives 0xFE which is -2 (instead, -3/2 gives -1 in C)
○ x >> k rounds toward -∞ for negative x, not toward 0 (unlike x/y in C)
○ In other words, it computes ⌊x / 2 k⌋ instead of ⌈x / 2 k⌉ for x < 0
○ But, it is always true that ⌊(x + (y-1)) / y⌋ = ⌈x / y⌉
○ Biasing: add 2 k - 1 before the shift when x < 0

Exercise: Divide by Eight

Write a function divide_by_8(int x) that returns x/8 using only >>, +, &

#include <stdio.h>

int divide_by_8(int x) {

 int bias = (x >> 31) & 7;

 return (x + bias) >> 3;

}

int main() {

 int minOdd = 0x80000001;

 printf("%d [0]\n", divide_by_8(0));

 printf("%d [0]\n", divide_by_8(7));

 printf("%d [0]\n", divide_by_8(-7));

 printf("%08X [%08X]\n", divide_by_8(minOdd), minOdd/8);

}

Fixed Point vs Floating Point

Fixed-point format: a fixed number of bits is reserved for the fractional part.
● Example: use unsigned chars (1 byte) and reserve 2 bits for fractional part.

 0x87 represents 33.75

The range for unsigned chars was 0 to 255.

By reserving 2 bits for the fractions part:
● The range is now [0, 63.75] (0x00 to 0xFF)
● We can represent fractional values with increments of 0.25

Floating-point format: the position of the binary point can change.
● Flexible trade-off between range and precision

8 7

1 0 0 0 0 1 1 1

32 16 8 4 2 1 0.5 0.25

IEEE 754 Standard: 32-bit

Binary32 Format (float)

● Decimal value: (-1)sign × 1.(fraction) × 2 exponent - 127

● Decimal range: (7 significant decimal digits) × 10±38

● Exponent encodes values [-126, 127] as unsigned integers with bias

● Exponent of all 0’s reserved for:
○ Zeros: 0x00000000 (0.0), 0x80000000 (-0.0)
○ Denormalized values: (-1)sign × 0.(fraction) × 2 -126 (nonzero fraction)

● Exponent of all 1’s reserved for:
○ Infinity: 0x7F800000 (∞), 0xFF800000 (-∞)
○ NaN: with any nonzero fraction

sign exponent fraction

1 bit 8 bits 23 bits

IEEE 754 Standard: 64-bit

Binary64 Format (double)

● Decimal value: (-1)sign × 1.(fraction) × 2 exponent - 1023

● Decimal range: (≃ 16 significant decimal digits) × 10 ±308

● Exponent encodes values [-1022, 1023] as unsigned integers with bias

● Exponent of all 0’s reserved for:
○ Zeros: 0x0000000000000000 (0.0), 0x8000000000000000 (-0.0)
○ Denormalized values: (-1)sign × 0.(fraction) × 2 -1022 (nonzero fraction)

● Exponent of all 1’s reserved for:
○ Infinity: 0x7FF0000000000000 (∞), 0xFFF0000000000000 (-∞)
○ NaN: any nonzero fraction

sign exponent fraction

1 bit 11 bits 52 bits

Other formats, same patterns (from CS:APP)

Bias: 2k-1-1 (0111...1)

Same bit patterns for
● Zero
● Smallest

denormalized
● Largest

denormalized
● Smallest

normalized
● One
● Largest

normalized
● Infinity

To negate, just flip the
sign bit (except NaN)

Rounding and Casting in C

The IEEE 754 standard defines four rounding modes:
● Round to nearest, ties to even: default rounding in C for float/double ops
● Round towards zero (truncation): used to cast float/double to int
● Round up (ceiling): go towards +∞ (gives an upper bound)
● Round down (floor): go towards -∞ (gives a lower bound)

Floating point operations
● Addition and subtraction are not associative

○ Add small-magnitude numbers before large-magnitude ones

● Multiplication and division are not associative (nor distributive)
○ Control magnitude with divisions (if possible)

(big1 * big2) / (big3 * big4) overflows on first multiplication
1/big3 * 1/big4 * big1 * big2 underflows on first multiplication
(big1 / big3) * (big2 / big4) is likely better

● Comparison should use fabs(x-y) < epsilon instead of x==y
● Instead: 2’s complement is associative (even after overflow), can use x==y

Exercise: Return 1

Write a function unsigned one() that returns the bit-level value of 1.0f

#include <stdio.h>

unsigned int one() { return 0x3f800000; }

// union used to print the bit-level encoding of a float

union converter { float f; unsigned int i; };

unsigned int f2b(float x) {

 union converter c; c.f = x;

 return c.i;

}

int main() {

 printf("1.0: %08X [%08X]\n", one(), f2b(1.0f));

}

Exercise: Return 2

Write a function unsigned two() that returns the bit-level value of 2.0f

#include <stdio.h>

unsigned int two() { return 0x40000000; }

// union used to print the bit-level encoding of a float

union converter { float f; unsigned int i; };

unsigned int f2b(float x) {

 union converter c; c.f = x;

 return c.i;

}

int main() {

 printf("2.0: %08X [%08X]\n", two(), f2b(2.0f));

}

Variations

● What about the bit-level value of -1.0f and -2.0f ?
● What about the bit-level value of 4.0f? And 0.1f?

These bit-level values will be the unsigned input of your functions.

Note that the assignment directory includes the fshow command:

$./fshow 2.0

Floating point value 2

Bit Representation 0x40000000,

 sign = 0, exponent = 0x80, fraction = 0x000000

Normalized. +1.0000000000 X 2^(1)

Exercise: Floating-point Sign

Write a function int sign(unsigned int x) that returns the sign of x as 1/-1

int sign(unsigned int x) {

 return (x & 0x80000000) ? -1 : 1;

}

int main() {

 printf(" Sign of 2.0: %2d [1]\n", sign(f2b(2.0f)));

 printf(" Sign of -1.0: %2d [-1]\n", sign(f2b(-1.0f)));

 printf(" Sign of 0.0: %2d [1]\n", sign(f2b(0.0f)));

 printf(" Sign of -0.0: %2d [-1]\n", sign(f2b(-0.0f)));

 printf(" Sign of 1.0/0.0: %2d [1]\n", sign(f2b(1.0f/0.0f)));

 printf(" Sign of 1.0/-.0: %2d [-1]\n", sign(f2b(1.0f/-.0f)));

}

Exercise: Extract Exponent

Write a function int exponent(unsigned int x) that returns the exponent
of x (as is, including the bias).

int exponent(unsigned int x) {

 return (x >> 23) & 0xFF;

}

int main() {

 printf(" 2.0: %3d [128]\n", exponent(f2b(2.0f)));

 printf(" -1.0: %3d [127]\n", exponent(f2b(-1.0f)));

 printf(" 0.0: %3d [0]\n", exponent(f2b(0.0f)));

 printf(" -0.0: %3d [0]\n", exponent(f2b(-0.0f)));

 printf("1.0/0.0: %3d [255]\n", exponent(f2b(1.0f/0.0f)));

 printf("1.0/-.0: %3d [255]\n", exponent(f2b(1.0f/-.0f)));

}

Exercise: Extract Fraction

Write a function int fraction(unsigned int x) returning the fraction of x,
including the implicit leading bit equal to 1 (ignore denormalized numbers).

int fraction(unsigned int x) {

 return (x & 0x007FFFFF) | 0x00800000;

}

int main() {

 printf(" 2.0: %08X [0x00800000]\n", fraction(f2b(2.0f)));

 printf(" -1.0: %08X [0x00800000]\n", fraction(f2b(-1.0f)));

 printf(" 2.5: %08X [0x00A00000]\n", fraction(f2b(2.5f)));

}

Exercise: Detect Floating-point Zero

Write a function int is_zero(unsigned int x) returning 1 if x is 0.0 or -0.0,
and 0 otherwise. (Trivial solution under relaxed assignment rules!)

int is_zero(unsigned int x) {

 return (x == 0x00000000 || x == 0x80000000) ? 1 : 0;

}

int main() {

 printf(" 0.0: %d [1]\n", is_zero(f2b(0.0f)));

 printf(" -0.0: %d [1]\n", is_zero(f2b(-0.0f)));

 printf(" 1.0: %d [0]\n", is_zero(f2b(1.0f)));

 printf(" -1.0: %d [0]\n", is_zero(f2b(-1.0f)));

 unsigned int denormalized = f2b(1.4e-45f);

 printf("1.4e-45: %d [0]\n", is_zero(denormalized));

 printf("1.4e-45 is %08X [0x00000001]\n", denormalized);

}

Exercise: Detect Denormalized Numbers

Write a function int denorm(unsigned int x) that returns 1 if x is
denormalized, and 0 otherwise.

int denorm(unsigned int x) {

 return !((x >> 23) & 0xFF) && (x & 0x007FFFFF);

}

int main() {

 printf(" 0.0: %d [0]\n", denorm(f2b(0.0f)));

 printf(" -0.0: %d [0]\n", denorm(f2b(-0.0f)));

 printf(" 1.0: %d [0]\n", denorm(f2b(1.0f)));

 printf(" -1.0: %d [0]\n", denorm(f2b(-1.0f)));

 unsigned int denormalized = f2b(1.4e-45f);

 printf("1.4e-45: %d [1]\n", denorm(denormalized));

 printf("1.4e-45 is %08X\n", denormalized);

}

Assignment: Divide float by 2

Function prototype: unsigned float_half(unsigned uf)

Float Value
● Normalized: (-1)sign × 1.(fraction) × 2 exponent - 127

● Denormalized: (-1)sign × 0.(fraction) × 2 -126

Exponent of all 0’s reserved for zeros and denormalized values.
Exponent of all 1’s reserved for: 0x7F800000 (+∞), 0xFF800000 (-∞), NaN.

What happens after division by 2?
● Nothing for +0.0, -0.0, +∞, -∞, NaN
● Can we decrease the exponent by 1?

○ What if the exponent becomes 0x00? 1.(fraction) vs 0.(fraction)
● For denormalized numbers, how do we divide by 2?
● Do we need a round-up term? When? ...00? ...01? ...10? ...11?

sign exponent fraction

1 bit 8 bits 23 bits

Assignment: Cast float to int

Function prototype: int float_f2i(unsigned uf)

Float Value
● Normalized: (-1)sign × 1.(fraction) × 2 exponent - 127

● Denormalized: (-1)sign × 0.(fraction) × 2 -126

What happens after cast to int?
● For NaN, +∞, -∞ and out-of-range values, return 0x80000000

○ Which values of the exponent make the float out-of-range for int?
○ Maximum int (2 31 - 1) is < 1.(fraction) × 2 exponent - 127 for exponent > ???

● Denormalized values are < 2 -126. What happens to them?
● What happens to other numbers with exponent < 127?
● For normalized values in range, how to compute 1.(fraction) × 2 exponent - 127 ?
● How should we handle negative floats? (Using (-x) is allowed.)

sign exponent fraction

1 bit 8 bits 23 bits

