CS356: Discussion \#3

Floating-Point Operations
Marco Paolieri (paolieri@usc.edu)

Schedule: Exams and Assignments

- Week 1: Binary Representation HW0
- Week 2: Integer Operations
- Week 3: Floating-Point Operations Data Lab 1
- Week 4: Assembly
- Week 5: Assembly Data Lab 2
- Week 6: Assembly Bomb Lab
- Week 7: Exam I (Oct. 2) and Security Vulnerabilities
- Week 8: Memory Organization
- Week 9: Caching Attack Lab
- Week 10: Virtual Memory
- Week 11: Dynamic Memory Allocation and Linking
- Week 12: Processor Organization and Exam II (Nov. 8) Cache Lab
- Week 13: Processor Organization
- Week 14: Code Optimization and Thanksgiving
- Week 15: Cache Coherency and Review Allocation Lab
- Week 16: Study Days and Final (Dec. 6)

Data Lab 2

- Deadline: Monday Sep. 17th, 2018 at 11:59pm PDT
- Steps
- Read the instructions at
http://bytes.usc.edu/cs356/assignments/datalab-2.pdf
- You already cloned your class repository inside the VM
\$ git clone git@github.com:usc-csci356-fall2018/hw-username.git
- Now, you need to pull the new assignment
\$ cd hw-username; git pull; cd proj-2
- Inside the file bits.c, complete the body of the functions byteSwap, ezThreeFourths, float_abs, float_half, float_f2i
- Check violations (./dlc bits.c), correctness (make; ./btest) and your final score (./driver.pl)
- Commit, push, submit full commit hash at http://bytes.usc.edu/cs356/assignments

Data Lab 2: What to implement

Integer Problems: Only 1-byte constants (0xFA), no loops (for, while), no conditionals (if), no macros (INT_MAX), no comparisons ($\mathbf{x = = y}, \mathrm{x}>\mathrm{y}$), no unsigned int, no operators - \&\& ||, only ! ~ \& | ^ + << >>

- int byteSwap(int x, int n, int m): swap bytes n and m
- int ezThreeFourths(int x): return $x * 3 / 4$ (beware of rounding)

Floating-point Problems: 4-byte constants (0x12345678), loops (for, while), conditionals (if), comparisons ($\mathbf{x}==\mathbf{y}, \mathrm{x}>\mathrm{y}$), operators - \&\& ||, but no macros (INT_MAX), no float types or operations.

The unsigned input and output are the bit-level equivalent of 32-bit floats

- unsigned float_abs(unsigned x): return abs(f) (NaNs unchanged)
- unsigned float_half(unsigned x): return f/2 (NaNs unchanged)
- int float_f2i(unsigned x): return (int)f
- For x out of range (including NaN and infinity), return 0x80000000

Exercise: Reset Bytes

Write a function reset_bytes (int x, int n, int m) that resets bytes of x at positions n and m (possible input positions: $0,1,2,3$) using only <<, ~, \&

```
#include <stdio.h>
```

int reset_bytes(int x, int n, int m) \{
int reset_n $=\sim(0 x F F \ll(n \ll 3)) ; ~ / / ~ s h i f t ~ 0 x F F ~ b y ~ n * 8 ~ b i t s ~$
int reset_m = ~(0xFF << ($m \ll 3$)); // shift 0xFF by m*8 bits
return x \& reset_n \& reset_m;
\}
int main() \{
printf("\%08X [DD0000AA] \n", reset_bytes(0xDDCCBBAA,1,2));
printf("\%08X [00CCBBAA]\n", reset_bytes(0xDDCCBBAA,3,3));
printf("\%08X [DD00BB00]\n", reset_bytes(0xDDCCBBAA, 2,0));
\}

Exercise: Multiply using shifts

Write a function void mult (int x) that multiplies x

- by 6 , using 2 shifts and 1 add/sub;
- by 31 , using 1 shifts and 1 add/sub;
- by -6 , using 2 shifts and 1 add/sub;
- by 55 , using 2 shifts and 2 add/sub.
\#include <stdio.h>
static void mult(int x) \{ printf("\nx = \%d\n", x);

$$
\begin{aligned}
& \text { printf(" } 6 \text { * x = (8-2) * x = \%d\n", (x << 3) - (x << 1)); } \\
& \text { printf("31 * x = (32-1) * x = \%d\n", (x<< 5) - x); } \\
& \text { printf("-6 * x = (2-8) * x = \%d\n", (x << 1) - (x << 3)); } \\
& \text { printf("55 * x = (64-8-1) * x = \%d\n", (x << 6)-(x << 3)-x); }
\end{aligned}
$$

\}
int main() \{ mult(0); mult(1); mult(-1); mult(10); mult(-100); mult(7);

Dividing Two's-Complement by Powers of 2

- $\quad \mathbf{x} / 2^{k}$ when $x \geqslant 0$: $\quad x \gg k$
- $\quad \mathrm{d} / 2^{\mathrm{k}}$ when $\mathrm{x}<0$: $(\mathrm{x}+(1 \ll \mathrm{k})-1)$ >> k
- Consider (-3)/2 with signed char (1 byte)
- 0xFD >> 1 gives 0xFE which is -2 (instead, $-3 / 2$ gives -1 in C)
- $\quad x \gg k$ rounds toward $-\infty$ for negative x, not toward 0 (unlike x / y in C)
- In other words, it computes $L x / 2^{k}$ 」 instead of $\left\lceil x / 2^{k} 7\right.$ for $x<0$
- But, it is always true that $L(x+(y-1)) / y\rfloor=\lceil x / y\rceil$
- Biasing: add $\mathbf{2}^{k}-\mathbf{1}$ before the shift when $x<0$

k	Bias	$-12,340+$ Bias (Binary)	$\gg \mathrm{k}$ (Binary)	Decimal	$-12340 / 2^{\mathrm{k}}$
0	0	1100111111001100	1100111111001100	-12340	-12340.0
1	1	1100111111001101	1110011111100110	-6170	-6170.0
4	15	1100111111011011	111110011111101	-771	-771.25
8	255	1101000011001011	1111111111010000	-48	-48.203125

Figure 2.29 Dividing two's-complement numbers by powers of 2. By adding a bias before the right shift, the result is rounded toward zero.

Exercise: Divide by Eight

Write a function divide_by_8(int x) that returns $\mathrm{x} / 8$ using only >>, +, \&

```
#include <stdio.h>
```

int divide_by_8(int x) \{
int bias = ($\mathrm{x} \gg 31$) \& 7;
return (x + bias) >> 3;
\}
int main() \{
int minOdd = 0x80000001;
printf("\%d [0]\n", divide_by_8(0));
printf("\%d [0]\n", divide_by_8(7));
printf("\%d [0]\n", divide_by_8(-7));
printf("\%08X [\%08X]\n", divide_by_8(minOdd), minOdd/8);
\}

Fixed Point vs Floating Point

Fixed-point format: a fixed number of bits is reserved for the fractional part.

- Example: use unsigned chars (1 byte) and reserve 2 bits for fractional part.

8					7				
$\mathbf{1}$	0	0	0	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$		
32	16	8	4	2	1	0.5	0.25		

0x87 represents 33.75

The range for unsigned chars was 0 to 255.
By reserving 2 bits for the fractions part:

- The range is now [0, 63.75] (0x00 to 0xFF)
- We can represent fractional values with increments of 0.25

Floating-point format: the position of the binary point can change.

- Flexible trade-off between range and precision

IEEE 754 Standard: 32-bit

Binary32 Format (float)

sign	exponent	fraction
1 bit	8 bits	23 bits

- Decimal value: $(-1)^{\text {sign }} \times 1$.(fraction) $\times 2^{\text {exponent }-127}$
- Decimal range: (7 significant decimal digits) $\times 10^{ \pm 38}$
- Exponent encodes values $[-126,127]$ as unsigned integers with bias
- Exponent of all 0's reserved for:
- Zeros: 0x00000000 (0.0), 0x80000000 (-0.0)
- Denormalized values: $(-1)^{\text {sign }} \times 0$. (fraction) $\times 2^{-126}$ (nonzero fraction)
- Exponent of all 1's reserved for:
- Infinity: 0x7F800000 (∞), 0xFF800000 (-
- NaN: with any nonzero fraction

IEEE 754 Standard: 64-bit

Binary64 Format (double)

sign	exponent	fraction
1 bit	11 bits	52 bits

- Decimal value: $(-1)^{\text {sign }} \times 1$.(fraction) $\times 2^{\text {exponent }-1023}$
- Decimal range: ($\simeq 16$ significant decimal digits) $\times 10 \pm 308$
- Exponent encodes values $[-1022,1023]$ as unsigned integers with bias
- Exponent of all 0's reserved for:
- Zeros: 0x0000000000000000 (0.0), 0x8000000000000000 (-0.0)
- Denormalized values: $(-1)^{\text {sign }} \times 0$. (fraction) $\times 2^{-1022}$ (nonzero fraction)
- Exponent of all 1's reserved for:
- Infinity: 0x7FF0000000000000 (∞), 0xFFF0000000000000 (-
- NaN : any nonzero fraction

Other formats, same patterns (from CS:APP)

Description	Bit representation	Exponent			Fraction		Value		
		e	E	$2^{\text {E }}$	f	M	$2^{E} \times M$	V	Decimal
Zero	00000000	0	-6	$\frac{1}{64}$	$\frac{0}{8}$	$\frac{0}{8}$	${ }^{0} 12$	0	0.0
Smallest pos.	00000001	0	-6	$\frac{1}{64}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{512}$	$\frac{1}{512}$	0.001953
	00000010	0	-6	$\frac{1}{64}$	$\frac{2}{8}$	$\frac{2}{8}$	$\frac{2}{512}$	$\frac{1}{256}$	0.003906
	$\begin{gathered} 00000011 \\ \vdots \end{gathered}$	0	-6	$\frac{1}{64}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{512}$	$\frac{3}{512}$	0.005859
Largest denorm.	00000111	0	-6	$\frac{1}{64}$	$\frac{7}{8}$	$\frac{7}{8}$	$\frac{7}{512}$	$\frac{7}{512}$	0.013672
Smallest norm.	00001000	1	-6	$\frac{1}{64}$	$\frac{0}{8}$	$\frac{8}{8}$	$\frac{8}{512}$	$\frac{1}{64}$	0.015625
	$\begin{gathered} 00001001 \\ \vdots \end{gathered}$	1	-6	$\frac{1}{64}$	$\frac{1}{8}$	$\frac{9}{8}$	$\frac{9}{512}$	$\frac{9}{512}$	0.017578
	00110110	6	-1	$\frac{1}{2}$	$\frac{6}{8}$	$\frac{14}{8}$	$\frac{14}{16}$	$\frac{7}{8}$	0.875
	00110111	6	-1	$\frac{1}{2}$	$\frac{7}{8}$	$\frac{15}{8}$	$\frac{15}{16}$	$\frac{15}{16}$	0.9375
One	00111000	7	0	1	$\frac{0}{8}$	$\frac{8}{8}$	$\frac{8}{8}$	1	1.0
	00111001	7	0	1	$\frac{1}{8}$	$\frac{9}{8}$	$\frac{9}{8}$	$\frac{9}{8}$	1.125
	00111010	7	0	1	$\frac{2}{8}$	$\frac{10}{8}$	$\frac{10}{8}$	$\frac{5}{4}$	1.25
	01110110	14	7	128	$\frac{6}{8}$	$\frac{14}{8}$	$\frac{1792}{8}$	224	224.0
Largest norm.	01110111	14	7	128	$\frac{7}{8}$	$\frac{15}{8}$	$\frac{1920}{8}$	240	240.0
Infinity	01111000	-	-	-	-	-	-	∞	-

Bias: $2^{k-1}-1$ (0111...1)
Same bit patterns for

- Zero
- Smallest
denormalized
- Largest
denormalized
- Smallest
normalized
- One
- Largest
normalized
- Infinity

To negate, just flip the sign bit (except NaN)

Figure 2.34 Example nonnegative values for 8-bit floating-point format. There are $k=4$ exponent bits and $n=3$ fraction bits. The bias is 7 .

Rounding and Casting in C

The IEEE 754 standard defines four rounding modes:

- Round to nearest, ties to even: default rounding in C for float/double ops
- Round towards zero (truncation): used to cast float/double to int
- Round up (ceiling): go towards $+\infty$ (gives an upper bound)
- Round down (floor): go towards $-\infty$ (gives a lower bound)

Floating point operations

- Addition and subtraction are not associative
- Add small-magnitude numbers before large-magnitude ones
- Multiplication and division are not associative (nor distributive)
- Control magnitude with divisions (if possible) (big1 * big2) / (big3 * big4) overflows on first multiplication 1/big3 * 1/big4 * big1 * big2 underflows on first multiplication (big1 / big3) * (big2 / big4) is likely better
- Comparison should use $\mathrm{fabs}(x-y)$ < epsilon instead of $x==y$
- Instead: 2's complement is associative (even after overflow), can use $x==y$

Exercise: Return 1

Write a function unsigned one() that returns the bit-level value of 1.0 f

```
#include <stdio.h>
```

unsigned int one() \{ return 0x3f800000; \}
// union used to print the bit-level encoding of a float
union converter \{ float f; unsigned int i; \};
unsigned int f2b(float x) \{
union converter c; c.f = x ;
return c.i;
\}
int main() \{
printf("1.0: \%08X [\%08X]\n", one(), f2b(1.0f));
\}

Exercise: Return 2

Write a function unsigned two() that returns the bit-level value of 2.0 f

```
#include <stdio.h>
```

unsigned int two() \{ return 0x40000000; \}
// union used to print the bit-level encoding of a float
union converter \{ float f; unsigned int i; \};
unsigned int f2b(float x) \{
union converter c; c.f = x ;
return c.i;
\}
int main() \{
printf("2.0: \%08X [\%08X]\n", two(), f2b(2.0f));
\}

Variations

- What about the bit-level value of $-1.0 f$ and $-2.0 f$?
- What about the bit-level value of $4.0 f$? And $0.1 f$?

These bit-level values will be the unsigned input of your functions.

Note that the assignment directory includes the fshow command:
\$./fshow 2.0
Floating point value 2
Bit Representation 0x40000000,
sign $=0$, exponent $=0 x 80$, fraction $=0 x 000000$
Normalized. +1.0000000000 X 2^(1)

Exercise: Floating-point Sign

Write a function int sign(unsigned int x) that returns the sign of x as 1/-1

```
int sign(unsigned int x) {
    return (x & 0x80000000) ? -1 : 1;
}
int main() {
    printf(" Sign of 2.0: %2d [ 1]\n", sign(f2b( 2.0f)));
    printf(" Sign of -1.0: %2d [-1]\n", sign(f2b(-1.0f)));
    printf(" Sign of 0.0: %2d [ 1]\n", sign(f2b( 0.0f)));
    printf(" Sign of -0.0: %2d [-1]\n", sign(f2b(-0.0f)));
    printf(" Sign of 1.0/0.0: %2d [ 1]\n", sign(f2b(1.0f/0.0f)));
    printf(" Sign of 1.0/-.0: %2d [-1]\n", sign(f2b(1.0f/-.0f)));
}
```


Exercise: Extract Exponent

Write a function int exponent (unsigned int x) that returns the exponent of x (as is, including the bias).
int exponent(unsigned int x) \{ return (x >> 23) \& 0xFF;
\}
int main() \{

$$
\begin{aligned}
& \text { printf(" 2.0: \%3d [128]\n", exponent(f2b(2.0f))); } \\
& \text { printf(" -1.0: \%3d [127]\n", exponent(f2b(-1.0f))); } \\
& \text { printf(" 0.0: \%3d [0]\n", exponent(f2b(0.0f))); } \\
& \text { printf(" -0.0: \%3d [0]\n", exponent(f2b(-0.0f))); } \\
& \text { printf("1.0/0.0: \%3d [255]\n", exponent(f2b(1.0f/0.0f))); } \\
& \text { printf("1.0/-.0: \%3d [255]\n", exponent(f2b(1.0f/-.0f))); }
\end{aligned}
$$

Exercise: Extract Fraction

Write a function int fraction (unsigned int x) returning the fraction of x , including the implicit leading bit equal to 1 (ignore denormalized numbers).

```
int fraction(unsigned int x) {
    return (x & 0x007FFFFF) | 0x00800000;
}
```

int main() \{
printf(" 2.0: \%08X [0x00800000]\n", fraction(f2b(2.0f)));
printf(" -1.0: \%08x [0x00800000]\n", fraction(f2b(-1.0f)));
printf(" 2.5: \%08X [0x00A00000]\n", fraction(f2b(2.5f)));
\}

Exercise: Detect Floating-point Zero

Write a function int is_zero(unsigned int x) returning 1 if x is 0.0 or -0.0 , and 0 otherwise. (Trivial solution under relaxed assignment rules!)

```
int is_zero(unsigned int x) {
    return (x == 0x00000000 || x == 0x80000000) ? 1 : 0;
```

\}
int main() \{
printf(" 0.0: \%d [1]\n", is_zero(f2b(0.0f)));
printf(" -0.0: \%d [1]\n", is_zero(f2b(-0.0f)));
printf(" 1.0: \%d [0]\n", is_zero(f2b(1.0f)));
printf(" -1.0: \%d [0]\n", is_zero(f2b(-1.0f)));
unsigned int denormalized $=f 2 b(1.4 e-45 f)$;
printf("1.4e-45: \%d [0]\n", is_zero(denormalized));
printf("1.4e-45 is \%08X [0x00000001]\n", denormalized);
\}

Exercise: Detect Denormalized Numbers

Write a function int denorm(unsigned int x) that returns 1 if x is denormalized, and 0 otherwise.
int denorm(unsigned int x) \{ return ! ((x >> 23) \& 0xFF) \&\& (x \& 0x007FFFFF); \}
int main() \{ printf(" 0.0: \%d [0]\n", denorm(f2b(0.0f))); printf(" -0.0: \%d [0]\n", denorm(f2b(-0.0f))); printf(" 1.0: \%d [0]\n", denorm(f2b(1.0f))); printf(" -1.0: \%d [0]\n", denorm(f2b(-1.0f))); unsigned int denormalized $=f 2 b(1.4 e-45 f)$; printf("1.4e-45: \%d [1]\n", denorm(denormalized)); printf("1.4e-45 is \%08X\n", denormalized);

Assignment: Divide float by 2

Function prototype: unsigned float_half(unsigned uf)

sign	exponent	fraction
1 bit	8 bits	23 bits

Float Value

- Normalized: $(-1)^{\text {sign }} \times 1$.(fraction) $\times 2^{\text {exponent }-127}$
- Denormalized: $(-1)^{\text {sign }} \times 0$. $($ fraction $) \times 2^{-126}$

Exponent of all 0 's reserved for zeros and denormalized values.
Exponent of all 1's reserved for: 0x7F800000 (+ $+\infty$), 0xFF800000 ($-\infty$), NaN.
What happens after division by 2 ?

- Nothing for $+0.0,-0.0,+\infty,-\infty, \mathrm{NaN}$
- Can we decrease the exponent by 1 ?
- What if the exponent becomes 0x00? 1.(fraction) vs 0 .(fraction)
- For denormalized numbers, how do we divide by 2 ?
- Do we need a round-up term? When? ...00? ...01? ...10? ...11?

Assignment: Cast float to int

Function prototype: int float_f2i(unsigned uf)

sign	exponent	fraction
1 bit	8 bits	23 bits

Float Value

- Normalized: $(-1)^{\text {sign }} \times 1$.(fraction) $\times 2^{\text {exponent }-127}$
- Denormalized: $(-1)^{\text {sign }} \times 0$. $($ fraction $) \times 2^{-126}$

What happens after cast to int?

- For NaN, $+\infty,-\infty$ and out-of-range values, return $0 x 80000000$
- Which values of the exponent make the float out-of-range for int?
- Maximum int ($2^{31}-1$) is < 1.(fraction) $\times 2^{\text {exponent }-127}$ for exponent > ???
- Denormalized values are $<2^{-126}$. What happens to them?
- What happens to other numbers with exponent <127?
- For normalized values in range, how to compute 1.(fraction) $\times 2^{\text {exponent }-127}$?
- How should we handle negative floats? (Using ($-x$) is allowed.)

