
CS356: Discussion #1
Development Environment

Marco Paolieri (paolieri@usc.edu)

Contact Information

Marco Paolieri
PhD at the University of Florence, Italy (2015)
Postdoc at USC since 2016

Email: paolieri@usc.edu
Office Hours: Tuesday, 9:00–11:00am (SAL 200)

Discussion sessions:
- Friday, 10:00–11:50am (KDC 235)
- Friday, 12:00–1:50pm (KDC 235)

Course Staff and Office Hours

Instructor: Mark Redekopp
11 TAs/CPs!

Schedule: Exams and Assignments

● Week 1: Binary Representation HW0 .
● Week 2: Integer Operations
● Week 3: Floating-Point Operations Data Lab 1 .
● Week 4: Assembly Data Lab 2 .
● Week 5: Assembly
● Week 6: Assembly Bomb Lab .
● Week 7: Exam I (Oct. 2) and Security Vulnerabilities
● Week 8: Memory Organization
● Week 9: Caching Attack Lab .
● Week 10: Virtual Memory
● Week 11: Dynamic Memory Allocation and Linking
● Week 12: Processor Organization and Exam II (Nov. 8) Cache Lab .
● Week 13: Processor Organization
● Week 14: Code Optimization and Thanksgiving
● Week 15: Cache Coherency and Review Allocation Lab .
● Week 16: Study Days and Final (Dec. 6)

Submitting Your Homework

● You will receive access to a GitHub repository for this class
○ https://github.com/usc-csci356-fall2018/hw_yourusername

● We will add homework assignments to subdirectories of your repository
○ Directories named proj1 through proj6
○ Inside, you will find instructions and scripts to test your work

● When you are ready:
○ Create a README.md in the assignment directory
○ Suppress all debug information (e.g., printf)
○ Make sure that your code compiles without errors in the VM
○ Commit your code and push to GitHub
○ Save and submit the commit SHA on the course website

● We will check and grade your commit (multiple submissions are allowed)

Installing the Virtual Machine

● Download the VM (7 GB):
http://bytes.usc.edu/files/cs103/install/StudentVM_Spring2018.ova

● Install VirtualBox from www.virtualbox.org (with extension pack)
● [File] > [Import Appliance] > [Select .ova file] > [Next] > [Import]

● The VM will suggest you to login as student after booting
● The password is developer
● Fine-tuning and troubleshooting instructions at:

http://bytes.usc.edu/cs103/install/

At the end of this discussion session, we will help you solve problems with the
VM on your laptop.

Otherwise, ask on Piazza!

On the Virtual Machine

You can use the VM to complete your assignments.

● If you prefer to use your own system (macOS, Windows, Linux) for
development, test your code on the VM before submitting.

● On the VM, you will (mostly) use these tools:
○ Linux shell (bash): to run commands and manage files
○ GCC to compile C programs
○ GIT to interact with your GitHub repository and submit assignments

Linux Shell

● Most commands also on macOS (natively) and Windows (Cygwin)
● Unix philosophy (Ken Thompson and others at Bell Labs):

○ Make each program do one thing well
○ Expect the output of every program to become input to another
○ Design and build software to be tried early
○ Use tools in preference to unskilled help to lighten programming tasks

In the VM, start the Gnome console. At the bash prompt, you can:
● Give commands (type command, then ENTER)
● Navigate history of commands (UP/DOWN keys)
● Search history of commands (CTRL + r)
● Close the shell (CTRL + d)

marco@mycomputer:~$

● The prompt shows (by default): user name, host name, current directory

Linux Shell: Asking for Help

$ man ls

Search with /word, n for next match, N for previous match, q to quit man page

Linux Shell: Working with Files

● Change directory: $ cd myrepo

● List files
○ $ ls (show files in current directory)
○ $ ls -a (do not ignore entries starting with a dot)
○ $ ls -l (show permissions, owner, group, size, date)
○ $ ls -lh (show size in kB / MB / GB)
○ $ ls -lht (sort by time, newest first)

● Copy or move files
○ $ cp a.txt b.txt (create copy of a file)
○ $ cp *.txt dir1 (copy all text files to existing directory)
○ $ mv *txt dir1 dir2 (move all text files and dir1 inside dir2)
○ $ cp -r dir2/dir1 dir3 (recursively copy dir1 inside dir3)

● Create directory (mkdir dir1) and remove empty directory (rmdir dir1)

● Remove files (rm file1) and non-empty directories (rm -r dir2):

Linux Shell: File Permissions

-rwxrwxrwx

● Permissions for owner, group, other users (starts with - for files, d for dirs)
● Change owner/group of all files recursively: $ chown -R user:group *
● Set typical directory permissions: $ chmod 755 dir1
● Set typical file permissions: $ chmod 644 file.txt

Linux Shell: Useful commands

● Filter file by line:
○ $ grep gold words.txt (find lines containing gold)
○ $ grep -v gold words.txt (find lines not containing gold)

● Count lines, words, bytes in a file
○ $ wc hello.txt (count lines, words, bytes)
○ $ wc -l hello.txt (count just lines)

● Sort lines in a file
○ $ sort hello.txt (print sorted lines)
○ $ sort -u hello.txt (print sorted lines, removing duplicates)

● Replace line text using regular expressions, print the result
○ $ sed 's/Hello/Ciao/' hello.txt (replace first occurrence)
○ $ sed 's/\t/ /g' hello.txt (replace all tabs with 4 spaces)

● Create an empty file: $ touch empty.txt

● Find files by name: $ find /home/marco -name "*.txt" -type f

Linux Shell: Working with Streams

● Print a string to output stream:
○ $ echo "Hello World"

Hello World

● Redirect command output to file:
○ $ echo -n "Hello World" > hello.txt (no \n, redirect stdout)
○ $ echo "!!" >> hello.txt (append, don’t create a new file)
○ $ echo "!!" 1>> hello.txt (equivalent, stdout is stream #1)

● Concatenate files:
○ $ cat hello.txt hello.txt (print “Hello World!!” twice)
○ $ cat hello.txt hello.txt > twice.txt (save to file)

● Use a file as program input (stream #0)
○ $ tr H B < hello.txt (print “Bello World!!”)
○ $ cat < hello.txt (print “Hello World!!”)

● Redirect error stream (stream #2) to file:
○ $ cat /etc/sudoers 2> hello.txt (write error msg to file)

Linux Shell: Working with Pipes

“Expect the output of every program to become input to another.”

● Filter file and count/sort matching lines
○ $ grep gold words.txt | wc -l

○ $ grep gold < words.txt | wc -l

○ $ cat words.txt | grep gold | wc -l

○ $ cat words.txt | grep gold | sort -u

○ $ cat words.txt | grep gold | sort -u > out.txt

● Examine text files
○ $ less file.txt

○ $ cat file1.txt | less

○ $ cat file1.txt file2.txt | head -n10

○ $ cat file1.txt file2.txt | sort | tail -n10

○ # tail -F /var/log/messages

Linux Shell: System Commands

● System resources
○ Disk space: $ df -h
○ Available RAM: $ free -h
○ Available CPUs/cores: $ lscpu

● Running processes and CPU usage
○ $ top

○ $ htop

● Connected/mounted disks:
○ $ lsblk -a

● Network interfaces and connections:
○ $ netstat -ta

○ $ ip addr show

○ $ ip route show

○ # ifconfig

GCC: The GNU Compiler Collection

● Many front-end languages: C, C++, Objective-C, Fortran, Ada
● Many target architectures: x86-64 (-m64), i386 (-m32), ARM
● gcc runs

○ the compiler (C to assembly)
○ the assembler (assembly to object code)
○ the linker (combine many binary objects to obtain final executable)

#include <stdio.h>

/* multi-line

 comment */

// single-line comment (C99)

int main(void) {

 char *str = "world";

 printf("Hello, %s!\n", str);

 return 0;

}

Compiling and Running
$ gcc -Wall -Wextra hello.c -o hello

$./hello

Hello, world!

Checking the compiler version
$ gcc --version

gcc (Ubuntu 5.4.0-6ubuntu1~16.04.5) 5.4.0 20160609

We will explore GCC in the rest of the class...

GCC: Try now on the VM

Git: Distributed Version Control

● The most used version control system (others: cvs, svn, hg, bzr)

● Key features:
○ distributed (every user has a local copy of the history)
○ snapshot-based (not deltas)
○ simple branching

● Great references:
○ Pro Git (git-scm.com/book)
○ Visual Guide (marklodato.github.io/visual-git-guide)

Git and GitHub Setup

● On GitHub
○ In [Settings] > [Profile]: Your public email should be your USC one
○ In [Settings] > [Email]: Your primary email should be your USC one

(username@usc.edu used in the form)

● Generate a new SSH key
○ $ ssh-keygen -t rsa -b 4096 -C "username@usc.edu"

○ Add the contents of id_rsa.pub to GitHub [Settings] > [SSH Keys]:
help.github.com/articles/adding-a-new-ssh-key-to-your-

github-account/

● Setup Git
○ $ git config --global user.name "Linus Torvalds"

○ $ git config --global user.email username@usc.edu

● Test setup:
○ $ git clone git@github.com:you/your-repo.git

Git: Snapshots, not differences

Git commits store a snapshot of all files, not deltas wrt previous versions

Git: Distributed

● Users operate on local copies of the history (fast, works offline)
● Most operations only add data (can always recover previous versions)
● Files are identified by SHA-1 hashes

The user decides when to
synchronize:

● Pull to obtain remote changes
● Push to make local changes

known to other users
● Usually: pull, merge, push

Git: Working Directory, Index, History

● Git repository (index, history, settings)
lives inside .git

● Working directory: the files in the
directory tree, your workspace
○ Used for real work (writing C files)
○ Ignore patterns from .gitignore

● Index (staging area): files ready to be
saved in a commit
○ git add file.txt adds to index
○ Current version is added: later

changes must be added again
(check with $ git status)

● History: a graph of commits, each with
author, data, and a snapshot of all files
(check with $ git log --graph)

Git: Commit

Git: Diverging Histories

Git: Moving around History

