

CSCI 356 Fall 2017 : Practice Exam I

DO NOT OPEN EXAM PACKET UNTIL INSTRUCTED TO DO SO

YOU MAY FILL IN INFORMATION ON THE FRONT NOW

PLEASE TURN OFF ALL ELECTRONIC DEVICES

ID#:

Name:

● This exam is closed book. You are allowed one (1) 8.5” x 11” handwritten note sheet
● You will have eighty (80) minutes to complete this exam.
● Answer the questions only in the spaces provided on the question sheets.
● If you give multiple solutions to a problem without indicating which one you want graded,

the grader may select one to grade.
● Your answers do not need to be complete, grammatically correct sentences.

Problem Points Possible

1 8

2 4

3 4

4 6

5 4

6 8

7 6

8 7

Total 47

1. Solve the following project one style problem.

/*
 * isAsciiDigit - return 1 if 0x30 <= x <= 0x39 (ASCII codes for characters '0' to '9')
 * Example: isAsciiDigit(0x35) = 1.
 * isAsciiDigit(0x3a) = 0.
 * isAsciiDigit(0x05) = 0.
 * Legal ops: ! ~ & ̂ | + << >>
 * Max ops: 15
 */

int isAsciiDigit(int x) {

int neg_0x30 = ~(0x30) + 1;
int x_minus_0x30 = x + neg_0x30;
int neg_0x3a = ~(0x3a) + 1;
int x_minus_0x3a = x + neg_0x3a;
int lower_bound_mask = !(x_minus_0x30 >> 31); //0 if x >= 0x30, 1 if x < 0x30
int upper_bound_mask = !!(x_minus_0x3a >> 31); //0 if x > 0x3a, 1 if x <= 0x39
return lower_bound_mask & upper_bound_mask; //TOTAL OPS: 12

}

2. Write the following base-10 integers in eight-bit two’s complement. Express your

answer in both binary and hex (base-16).

a. 53

53 = 32 + 16 + 4 + 1
53 = 0011 0101
0011 -> 3 0101 -> 5 53 = 0x35

b. -75
-75 = -128 + 32 + 16 + 4 + 1
-75 = 1011 0101
1011 -> 11 -->b 0101 -> 5 -75 = 0xb5

3. Interpret the following as hex representations of two’s complement integers (eight bits
each). Write them both in binary and in base-10.

a. 0xCF
c → 12 → 1100 f → 15 → 1111 0xCF = 1100 1111
0xCF = -128 + 64 + 8 + 4 + 2 + 1 = -49

b. 0x49
4 → 0100 9 → 1001 0x49 = 0100 1001
0x49 = 64 + 8 + 1 = 73

4. Consider the eight-bit floating point format. In eight-bit floating point, there is one
sign bit, three exponent bits, and four fractional bits. The exponent bias is 3.

a. What number is 0110 1100 in base 10?
e = 110 = 6
f = 0.1100 = 0.75
E = e - bias = 6 - 3 = 3
M = 1 + f = 1 + 0.75 = 1.75
sign bit = 0 → positive

.75 1.1100 1110.0 141 × 23 = × 23 = =

b. How would 3.3125 (= 3 + 5/16) be represented in eight-bit floating point?

3.3125 = 11.0101 = .101011 × 21
M = 1.10101 → f = 0.10101
E = 1 → e = 1 + 3 = 4 = 100
S = positive = 0
3.3125 = 0100 1010 1

5. Give a value that makes each following expressions false, and explain why it makes the
expression false. If there is no value for x and y that would make the expression false,
indicate that. In each case, x and y are of type int.

a. ((x^y) < 0)

If x is 0x0, y is 0x0

b. ((x >> 31) + 1) >= 0

This is always true. There’s two cases: x >= 0 or x < 0. If x >= 0, x >> 31 is 0x0.
0x0 + 1 = 0x00000001. That’s greater than 0. If x < 0, x >> 31 is 0x11111111.
0xffffffff + 1 = 0. That’s equal to 0.

6. I have a C function with the following signature:
int practice_exam_problem(int a, int b);

Here is the assembly code for it:
 <+0>:cmp %esi,%edi
 <+2>: jle 0x4005be <practice_exam_problem+12>
 <+4>: lea 0x5(%rsi,%rsi,1),%eax
 <+8>: cmp %eax,%edi
 <+10>: je 0x4005d4 <practice_exam_problem+34>
 <+12>:cmp %esi,%edi
 <+14>:jge 0x4005ca <practice_exam_problem+24>
 <+16>:lea 0x4(%rdi,%rdi,2),%eax
 <+20>: cmp %eax,%esi
 <+22>: je 0x4005da <practice_exam_problem+40>
 <+24>: cmp %esi,%edi
 <+26>: jne 0x4005e0 <practice_exam_problem+46>
 <+28>: mov $0x4,%eax
 <+33>: retq
 <+34>: mov $0x3,%eax
 <+39>: retq
 <+40>: mov $0xa,%eax
 <+45>: retq
 <+46>: mov $0x2,%eax
 <+51>:retq

a. Give a value for parameters to make it return 2.

To return 2, we jump from <+26>, which triggers if %esi != %edi. A good way to
get to <+26> is from <+14>, which jumps to <+24> iff %edi >= %esi. But we want
to NOT trigger the jump on <+10> checking if %edi == %eax, where %eax is 2 *
%rsi + 5.

Careful not to trigger the jumps on <+10> and <+2>!
For the path to work, these conditions must hold:
a < b
b != 3a + 4

OR

a > b
a != 2b + 5

b. Give a value for parameters to make it return 3.

The line that returns 3 is on <+34>. We jump to that from <+10>. That only
happens when %eax == %edi. %eax is 2 * %rsi + 0x5. So this returns three when
2* %rsi + 0x5 == %edi.

So a == 2b + 5.

c. Give a value for parameters to make it return 4.

Nothing jumps to <+28>, but <+14> jumps to <+24>, which is right before it. To
get there, we need to jump from <+2>, the compare instruction behind <+14> So
to make the jump to <+14> b <= a. To make the jump to <+24> a <= b. We want
to avoid the jump to <+46>, so we want a == b. For all three conditions to hold
true, we can just set a == b.

d. Give a value for parameters to make it return 10.

In order to return 10, we need to take the jump at <+22>, which happens when
%eax == %esi. Before the comparison, %eax is set to 3 * %rdi + 4, which is 3a +
4; so we want b == 3a + 4. We also want %edi < %esi so we don’t jump at
<+14>. Finally, we load 2 * %rsi + 5 into %eax and compare that to %edi; we
don’t want to take the jump, so we need a != 2b + 5.

Final restrictions:
b == 3a + 4
a != 2b + 5
a < b

7. Consider the following struct on an x86-64 Linux machine:

struct my_struct {

char a;
long b;
short c;
float *d[2];
unsigned char e[3];
float f;

};

0x0 0x1 0x8 0x10 0x12

a b c

 0x18 0x20 0x28

 d[0] d[1]

 0x29 0x2b 0x30

e[0] e[1] e[2] f

 0x2a 0x2c

a. How many bytes will the struct occupy if our compiler optimizes for access time?

48 bytes

b. How many bytes will the struct occupy if our compiler optimizes for space?

34 bytes

8. Draw the stack frames of test and getbuf, given that the Instruction Pointer is currently at
0x004017c7 and the stack pointer is at 0x5561dcac at the start of test. Indicate where
the stack pointer is and the addresses and the content of the stack frames (variable
names are ok).

C code:

void test() {
 int val;

 val = getbuf();

 printf("No exploit. Getbuf returned 0x%x\n", val);

}

unsigned getbuf() {
 char buf[BUFFER_SIZE];

 gets(buf);

 return 1;

}

Assembly Code: Stack

test:
0x00401984
0x00401988
0x0040198d
0x00401992
0x00401994
0x00401999
0x0040199e
0x004019a3
0x004019a8
0x004019ac

getbuf:
0x004017c3
0x004017c7
0x004017ca
0x004017cf
0x004017d4
0x004017d8

sub
mov
callq
mov
mov
mov
mov
callq
add
retq

sub
mov
callq
mov
add
retq

$0x8,%rsp
$0x0,%eax
4017c3<getbuf>
%eax,%edx
$0x4031d8,%esi
$0x1,%edi
$0x0,%eax
400e00<__printf_chk@plt>
$0x8,%rsp

$0x28,%rsp
%rsp,%rdi
401a4d <Gets>
$0x1,%eax
$0x28,%rsp

test
stack
frame

getbuf
stack
frame

 Address Contents

0x5561dcac
0x5561dca4
0x5561dc9c

0x401992

0x5561dc94
0x5561dc8c
0x5561dc84
0x5561dc7c
0x5561dc74

Instruction Pointer 0x004017c7

Stack Pointer 0x5561dc74

/*
 * anyOddBit - return 1 if any odd-numbered bit in word set to 1
 * Examples anyOddBit(0x5) = 0, anyOddBit(0x7) = 1
 * Legal ops: ! ~ & ̂ | + << >>
 * Max ops: 12
 * Rating: 2
 */
int anyOddBit(int x) {
 int m8 = 0xAA;
 int m16 = m8 | m8 << 8;
 int m32 = m16 | m16 <<16;
 int oddx = x & m32;
 return !!oddx;

}

