CSCI 356 Fall 2017 : Practice Exam |

DO NOT OPEN EXAM PACKET UNTIL INSTRUCTED TO DO SO

YOU MAY FILL IN INFORMATION ON THE FRONT NOW

PLEASE TURN OFF ALL ELECTRONIC DEVICES

ID#:

Name:

This exam is closed book. You are allowed one (1) 8.5” x 11” handwritten note sheet
You will have eighty (80) minutes to complete this exam.

Answer the questions only in the spaces provided on the question sheets.

If you give multiple solutions to a problem without indicating which one you want graded,
the grader may select one to grade.

e Your answers do not need to be complete, grammatically correct sentences.

Problem Points Possible
1 8

2 4

3 4

4 6

5 4

6 8

7 6

8 7

Total 47

1. Solve the following project one style problem.

/*

* isAsciiDigit - return 1 if 0x30 <= x <= 0x39 (ASCII codes for characters '0' to '9')
* Example: isAsciiDigit(0x35) = 1.

* isAsciiDigit(0x3a) = O.

* isAsciiDigit(0x05) = O.

* Legal ops: - & | + << >

* Max ops: 15

*/

int isAsciiDigit(int x) {

2. Write the following base-10 integers in eight-bit two’s complement. Express your
answer in both binary and hex (base-16).

a. 53

3. Interpret the following as hex representations of two’s complement integers (eight bits
each). Write them both in binary and in base-10.

a. OxCF

b. 0x49

4. Consider the eight-bit floating point format. In eight-bit floating point, there is one
sign bit, three exponent bits, and four fractional bits. The exponent bias is 3.

a. What numberis 0110 1100 in base 10?

b. How would 3.3125 (= 3 + 5/16) be represented in eight-bit floating point?

5. Give a value that makes each following expressions false, and explain why it makes the
expression false. If there is no value for x and y that would make the expression false,
indicate that. In each case, x and y are of type int.

a. ((xt)<0)

b. (x>>31)+1)>=0

6. | have a C function with the following signature:
int practice_exam_problem(int a, int b);

Here is the assembly code for it:

<+0>:cmp
<+2>: jle
<+4>: lea
<+8>: cmp
<+10>: je
<+12>:cmp
<+14>:jge
<+16>:lea
<+20>: cmp
<+22>: je
<+24>: cmp
<+26>: jne
<+28>: mov
<+33>: retq
<+34>: mov
<+39>: retq
<+40>: mov
<+45>: retq
<+46>: mov
<+51>:retq

%esi, %edi

0x4005be <practice_exam_problem+12>
0x5(%rsi,%rsi, 1), %eax

%eax, %edi

0x4005d4 <practice_exam_problem+34>
%esi, %edi

0x4005ca <practice_exam_problem+24>
0x4(%rdi,%rdi,2),%eax

%eax,%esi

0x4005da <practice_exam_problem+40>
%esi, %edi

0x4005e0 <practice_exam_problem+46>
$0x4,%eax

$0x3,%eax
SOxa,%eax

S0x2,%eax

Give a value for parameters to make it return 2.

Give a value for parameters to make it return 3.

Give a value for parameters to make it return 4.

Give a value for parameters to make it return 10.

7. Consider the following struct on an x86-64 Linux machine:

struct my_struct {
char a;
long b;
short c;
float *d[2];
unsigned char e[3];
float f;

}s

a. Please lay out the struct in memory below. Clearly indicate:

i. any bytes used for padding.
ii. The boundaries of each type
iii. the end of the struct.

b. How many bytes will the struct occupy if our compiler optimizes for access time?

c. How many bytes will the struct occupy if our compiler optimizes for space?

8. Draw the stack frames of test and getbuf, given that the Instruction Pointer is currently at
0x004017c7 and the stack pointer is at 0x5561dcac at the start of test. Indicate where
the stack pointer is and the addresses and the content of the stack frames (variable

names are ok).

Stack Pointer

C code:
void test() { unsigned getbuf() {

int val; char buf[BUFFER_SIZE];

val = getbuf(); gets(buf);

printf("No exploit. Getbuf returned 0x%x\n", val); return 1;

} }
Assembly Code: Stack
Address Contents
test:
0x00401984 sub $0x8,%rsp
0x00401988 mov $0x0,%eax test
0x0040198d callq 4017c3<getbuf> stack
0x00401992 mov %eax,%edx frame
0x00401994 mov $0x4031d8,%esi
0x00401999 mov $0x1,%edi
0x0040199e mov $0x0,%eax
0x004019a3 callg 400e00<__printf_chk@plt> getbuf
0x004019a8 add $0x8,%rsp stack
0x004019ac retq frame
getbuf: sub $0x28,%rsp
0x004017¢3 mov 7ersp,%rdi
0x004017¢7 callq 401a4d <Gets>
0x004017ca mov $0x1.%eax
0x004017cf add $0x28,%rsp
0x004017d4 retq
0x004017d8
Instruction Pointer 0x004017c7

