
CSCI 356 Fall 2017 : Practice Final Exam Solutions

DO NOT OPEN EXAM PACKET UNTIL INSTRUCTED TO DO SO

YOU MAY FILL IN INFORMATION ON THE FRONT NOW

PLEASE TURN OFF ALL ELECTRONIC DEVICES

ID#:

Name:

● This exam is closed book. You are allowed one (2) 8.5” x 11” handwritten note sheets

● You will have one hundred and ten (110) minutes to complete this exam.

● Answer the questions only in the spaces provided on the question sheets.

● If you give multiple solutions to a problem without indicating which one you want graded,

the grader may select one to grade.

● Your answers do not need to be complete, grammatically correct sentences.

● This practice exam is not a substitute for reading the textbook, doing practice problems,
reviewing the course and assignments, or discussing material with your classmates.

● This might not be exhaustive coverage either.

● Instead, this exam is a chance to practice some material you might not have seen in an
exam-like context yet.

Problem 1 2 3 4 5 6 7

Possible

Earned

1. What are the possible output sequences from the following program:

int main() {

if (fork() == 0) {
printf("a");

exit(0);

}

else {
printf("b");

waitpid(-1, NULL, 0);
}

printf("c");

exit(0);

}

Circle the possible output sequences: abc acb bac bca cab cba

2. I am going to ask you what the output of the following program is.
pid_t pid;
int counter = 5;

void handler1(int sig) {
counter = counter - 2;
printf("%d", counter);
fflush(stdout);

exit(0);

}

int main() {
signal(SIGUSR1, handler1);
printf("%d", counter);
fflush(stdout);

if ((pid = fork()) == 0) {
while(1) {};

}

kill(pid, SIGUSR1);
waitpid(-1, NULL, 0);
counter = counter + 1;
printf("%d", counter);
exit(0);

}

What is the output? 536

3. Suppose a system has the following parameters:

● Virtual addresses are 20 bits wide
● Physical addresses are 18 bits wide
● Page size is 1KB (= 1024 bytes)
● The TLB is 2-way set associative and has 16 total entries.

a. Show a diagram of the breakdown of a virtual address. Indicate which bit(s) are used for
the virtual page number, the virtual page offset, the TLB index, and the TLB tag.

19 10 9 0

VPN VPO

TLB Tag TLB Index

19 13 12 10 9 0

b. Show a diagram of the breakdown of a physical address. Indicate which bit(s) are used
for the physical page number and physical page offset.

17 10 9 0

PPN PPO

c. Suppose we are going to translate virtual address 0x078E6 to physical memory. The

current state of the system is on the next page.
i. What is the virtual page number?

0000 0111 10 (01E)
ii. What is the TLB index?

110 (6)
iii. What is the TLB tag?

000 0011 (03)
iv. Will this lookup produce a TLB hit (yes or no)?

no (no tag match)
v. Will this lookup produce a page fault (yes or no)?

No (valid bit is 1)

vi. What is the physical address that corresponds to 0x078E6 ?
0101 0111 00 1110 0110 (0x15CE6)

What follows is the state of the TLB and Page Table for use in problem 4.

TLB:

Index Tag Physical page # Valid

0 03 C3 1

01 71 0

1 00 28 1

01 35 1

2 02 68 1

3A F1 0

3 03 12 1

02 30 1

4 7F 05 0

01 A1 0

5 00 53 1

03 4E 1

6 1B 34 0

00 1F 1

7 03 38 1

32 09 0

Page Table:

VPN PPN Valid VPN PPN Valid

000 71 1 010 60 0

001 28 1 011 57 0

002 93 1 012 68 1

003 AB 0 013 30 1

004 D6 0 014 0D 0

005 53 1 015 2B 0

006 1F 1 016 9F 0

007 80 1 017 62 0

008 02 0 018 C3 1

009 35 1 019 04 0

00A 41 0 01A F1 1

00B 86 1 01B 12 1

00C A1 1 01C 30 0

00D D5 1 01D 4E 1

00E 8E 0 01E 57 1

00F D4 0 01F 38 1

4. Three of the following four statements are benefits of virtual memory. For each one that is a
benefit, briefly explain how virtual memory allows this benefit. For the one (and it is only one)
that is not, mark it as “not a benefit.”

● It allows the virtual address space to be larger than the physical address space
Virtual memory allows the mapping from a virtual address to a physical address. If there
aren’t enough physical addresses available, then the kernel can overwrite the existing
mapping and store the old data at that physical location to hard disk.

● No process can accidentally access the memory of another process
Virtual addresses are mapped to physical addresses by the kernel, so a process can’t
access physical memory that it doesn’t own

● The TLB is more effective since without it dereferencing a virtual address now requires
two or more memory accesses
Not a benefit - property of the TLB rather than virtual memory itself

● Different processes can have overlapping virtual address spaces without conflict

Every process has the illusion of using the same address space, but they don’t actually
overlap in physical memory due to memory mapping behind the scenes

5. Suppose an int A is stored at virtual address 0xff987cf0, while another int B is stored at
virtual address 0xff987d98. I assert that if the size of a page is 0x1000 bytes, then A’s physical
address is numerically less than B’s physical address.

A. Is the assertion always, sometimes true, or never true?
always

B. Why?
Page size is 0x1000 bytes = 163 bytes = 212 bytes, so the upper 32 - 12 = 20 bits form
the VPN. A and B are in the same virtual page (VPN = 0xff987), which means they must
be in the same physical page.

6. Consider a 32-bit system with a page size of 4KB. A certain kernel designer wishes to
analyze the merits of using 2-level page tables.

a. How many entries are there in the page directory?
4KB/page / 4B/entry = 1024 entries/page

b. How much virtual memory is reachable from a single page directory entry? (i.e.: 4KB

are reachable from a single page table entry).
4KB/page * 1024 pages/directory = 4MB/directory

7. Consider the following dump of assembler code for function foo:
 0x0000000000400632 <+0>: sub $0x1,%esi
 0x0000000000400635 <+3>: mov $0x0,%r9d
 0x000000000040063b <+9>: jmp 0x400666 <foo+52>
 0x000000000040063d <+11>: lea (%r9,%rsi,1),%eax
 0x0000000000400641 <+15>: mov %eax,%ecx
 0x0000000000400643 <+17>: shr $0x1f,%ecx
 0x0000000000400646 <+20>: add %eax,%ecx
 0x0000000000400648 <+22>: sar %ecx
 0x000000000040064a <+24>: mov %ecx,%eax
 0x000000000040064c <+26>: movslq %ecx,%r8
 0x000000000040064f <+29>: mov (%rdi,%r8,4),%r8d
 0x0000000000400653 <+33>: cmp %edx,%r8d
 0x0000000000400656 <+36>: je 0x400670 <foo+62>
 0x0000000000400658 <+38>: cmp %edx,%r8d
 0x000000000040065b <+41>: jle 0x400662 <foo+48>
 0x000000000040065d <+43>: lea -0x1(%rcx),%esi
 0x0000000000400660 <+46>: jmp 0x400666 <foo+52>
 0x0000000000400662 <+48>: lea 0x1(%rcx),%r9d
 0x0000000000400666 <+52>: cmp %esi,%r9d
 0x0000000000400669 <+55>: jle 0x40063d <foo+11>
 0x000000000040066b <+57>: mov $0xffffffff,%eax
 0x0000000000400670 <+62>: repz retq

Write the C code for function foo. The signature is int foo (int * a, int b, int c)

// compact translation
int foo (int *a, int b, int c) {

int high = b - 1, low = 0;
while (low <= high) {

int mid = (low + high) / 2;
if (a[mid] = c) return mid;
else if (a[mid] < c) low = mid + 1;
else high = mid - 1;

}

return -1;
}

(See next page for a more line-by-line translation)

// direct translation
int foo (int *a, int b, int c) {

b--; // int high
int r9d = 0; // int low
int eax, ecx, r8d;
long r8;
while (r9d - b <= 0) {

eax = r9d + b; // low + high
ecx = eax;
ecx >>= 31;
ecx += eax;
ecx >>= 1; // (low + high) / 2
eax = ecx; // eax = (r9d + b) / 2 (no overflow)
r8 = ecx;
r8d = a[r8]; // r8d = a[eax]
if (r8d == c) {

return eax;
}

else if (r8d - c <= 0) {
r9d = ecx + 1; // r9d = eax + 1

}

else {
b = ecx - 1; // b = eax - 1

}

}

return -1;
}

