
 CS 356 Virtual Memory Exercises
Redekopp

Name: ____Solutions_______________________________

Due: Score: ________

1.) Given a virtual memory system with 32-bit virtual addresses, 16 KB pages, and 36-bit

physical addresses answer the following questions:

Define lg x = log2 x

16KB pages => lg 16KB = 14-bit page offset

32-bit VA – 14-bits = 18 VPN bits => 218 pages = 256K pages

36-bit PA – 14-bits = 22 PPF bits => 222 pages = 4 M pages

a. Given a single level page table, how much memory would be required to hold the

table assuming each entry in the table requires 4 bytes (this includes the page

frame, valid, dirty and other bits).

Page tables are indexed on virtual address so there will be 218 entries each of 4-

bytes yielding 220 bytes for the page table = 1 MB

b. Given a three level page table where the 1st level has 32 entries, the 2nd level has

64 entries and the third level contains the rest of the needed entries, show the

address bit field breakdown (which bits are used for levels 1, 2, and 3 page tables

and which bits are used as the page offset.

1st level has 32 entries and thus requires 5 bits (1st level gets the MS address bits)

2nd level has 64 entries and thus requires 6 bits (next 6 bits after 1st level bits)

3rd level requires 18 total VPN bits – 5 for 1st level – 6 for 2nd level = 7 bits for 3rd

level

VPN Page Offset

1st Level Index 2nd Level Index 3rd Level Index Page Offset

A31-A27 A26-A21 A20-A14 A13-A0

c. Assuming 4 byte entries in each level of page table, what is the worst case

memory usage (in bytes) required for the 3 level page table system described in

the previous part if 10 virtual pages are in use.

Worst case scenario is that all 10 pages require different 1st level entries and thus

10 second level tables and 10 third level tables

= 32*4 bytes for 1st level table + 10*64*4 for 2nd level tables + 10*128*4 for 3rd

level tables = 128 + 2560 + 5120 = 7808 bytes

d. Assume a 4-way set associative TLB with 128 total entries. Show the mapping

(fields) of the virtual address for accessing the TLB. Include the tag, set and page

offset fields.

128 entries / 4-ways = 32 sets => 5 set bits

VPN Page Offset

Tag

2nd Level Index

Set Page Offset

A31-A19

A26-A21

A18-A14 A13-A0

For questions 2-4, assume a 2-way set associative D-TLB (data only, no code pages) with 64

entries and LRU replacement. Also assume a virtual memory system with 32-bit virtual

addresses and 4 KB pages.

2.) If the D-TLB entries are initially all empty/invalid, how many unique pages could be

referenced before a D-TLB entry may be evicted (replaced). Give your reasoning to

receive credit.

Minimum number means fewest page access before something would have to be

replaced. The minimum number will come when all accesses map to the same set. Since

each set has 2 ways, then we may only be able to reference 2 pages safely before a 3rd

page access would cause an eviction..

3.) Now assume a program is run and at a certain point in time all D-TLB entries contain

valid translations. What is the maximum amount of memory (in bytes) that the program

can access w/o causing a page fault/replacement.

There are 64 entries each pointing to 4KB pages. Thus we could address/access

4KB * 64 = 256KB of memory.

4.) Examine the following code operating on three integer (word) arrays A, B, and C.

Assume i is allocated in a register as is the constant ARRAY_SIZE and neither requires

accessing memory. Further assume the arrays are allocated contiguously (B starts after

A’s last element, etc.) and the right-hand side (RHS) of the assignment is evaluated from

left-to-right (A[i] is accessed first, then B[i], etc.)

for(i=0; i < ARRAY_SIZE; i++){

 A[i] = A[i] + B[i] + C[i];

}

a. The worst-case scenario is that all three array translations map to the same set.

What size would the arrays have to be (ARRAY_SIZE=?) so that an access to

A[i], B[i], and C[i] require different translations but that the translations all

map to the same D-TLB set. There are probably many sizes that would work,

pick the smallest. [Remember that each array entry is an integer = word = 4-

bytes.]

64 entries / 2-ways = 32 sets => 5 set bits

VPN 4 KB Page Offset

Tag

2nd Level Index

Set Page Offset

A31-A17

A26-A21

A16-A12 A11-A0

The worst case will be when the arrays are aligned on boundaries that map to

the same set. Because they are all contiguous, the smallest size will have to

be equal to boundaries where the set bits and page offset bits are the same and

the tag increments by 1. An example is shown below:

 VPN 4 KB Page Offset

 Tag

2nd Level Index

Set Page Offset

A 0000 0000 0000 000

A26-A21

0 0000 0000 0000 0000

B 0000 0000 0000 001

A26-A21

0 0000 0000 0000 0000

C 0000 0000 0000 010

A26-A21

0 0000 0000 0000 0000

In this case the size of each array would be 217 bytes=128KB (because it spans

17 address bits). Another way to see it is that since there are 32 sets we would

have to go through all 32 sets before getting back to the same one. This

would mean addressing 32 * 4KB = 128KB of memory.

Finally ARRAY_SIZE would then be 32768 = 32KB since we have

128KB / 4 bytes per int = 32768

b. After the 0th iteration completes which 2 of the three arrays will have

translations in the TLB. [Hint: Keep in mind that the D-TLB is 2-way set-

associative and uses LRU replacement.]

Order of Access:

4th 1st 2nd 3rd

A[i] = A[i] B[i] C[i]

Since all accesses map to the same set and there are only 2-ways (entries per

set) then only the last 2 translations will be available. Thus C (3rd) and A (4th)

will have translations.

c. Given the situation after the 0th iteration, how many D-TLB (translation)

misses will be incurred by the next iteration? [Hint: Take into account the

evaluation order and what the last values accessed would have been from the

previous iteration.]

Order of Access:

4th = [B,C] in

TLB = MISS

replacing B

1st [C,A in TLB]

= HIT

2nd [C,A] in TLB

= MISS replacing

C

3rd = [A,B] in

TLB = MISS

replacing A

A[i] = A[i] B[i] C[i]

= 3 Misses and 1 Hit

d. By simply rewriting/re-ordering the assignment statement, can you reduce the

number of D-TLB misses? Hint: remember we said the RHS is evaluated

from left to right and then assigned to the left hand side (LHS).

Define the syntax (A,B,C,A) represent the order of access where the first three

are the RHS order and can be re-ordered and the last A is the LHS assignment

which cannot change. There are thus 6 possible orderings (3!). We will show

the Miss/Hit pattern corresponding to each access. These are arrived at by

remembering the previous 2 arrays access will be the ones in the TLB set.

(A[i],B[i],C[i],=>A[i]) = original ordering = (H,M,M,M) = 3 Misses

(A[i],C[i],B[i], =>A[i]) = similar to first = (H,M,M,M) = 3 Misses

(B[i],A[i],C[i], =>A[i]) = (M,H,M,H) = 2 Misses = GOOD!

(B[i],C[i],A[i], =>A[i]) = (M,M,M,H) = 3 Misses

(C[i],A[i],B[i], =>A[i]) = (M,H,M,H) = 2 Misses = GOOD!

(C[i],B[i],A[i], =>A[i]) = (M,M,M,H) = 3 Misses

Rationale: A is accessed twice each iteration…so we really want to keep that

in one of the ways of the set and let B and C swap. To do this the distance

between A accesses must be 2 (i.e. only 1 other access between an access to

A)

