
 CS 356 Virtual Memory Exercises
Redekopp

Name: ___

 Score: ________

Enter Answers on Blackboard.

1.) Given a virtual memory system with 32-bit virtual addresses, 16 KB pages, and 36-bit

physical addresses answer the following questions:

a. (4 pts.) Given a single level page table, how much memory would be required to

hold just the table assuming each entry in the table requires 4 bytes (this includes

the page frame, valid, dirty and other bits).

b. (16 pts.) Given a three level page table where the 1st level has 32 entries, the 2nd

level has 64 entries and the third level contains the rest of the needed entries,

show the address bit field breakdown (which bits are used for levels 1, 2, and 3

page tables and which bits are used as the page offset.

c. (12 pts.) Assuming 4 byte entries in each level of page table, what is the worst

case memory usage (in bytes) required for the 3 level page table system described

in the previous part if 10 virtual pages are in use.

d. (12 pts.) Assume a 4-way set associative TLB with 128 total entries. Show the

mapping (fields) of the virtual address for accessing the TLB. Include the tag, set

and page offset fields.

For questions 2-4, assume a 2-way set associative D-TLB (data only, no code pages) with 64

entries and LRU replacement. Also assume a virtual memory system with 32-bit virtual

addresses and 4 KB pages.

2.) (5 pts.) If the D-TLB entries are initially all empty/invalid, how many unique pages could

be referenced before a D-TLB entry may be evicted (replaced). Give your reasoning to

receive credit.

3.) (5 pts.) Now assume a program is run and at a certain point in time all D-TLB entries

contain valid translations. What is the maximum amount of memory (in bytes) that the

program can access w/o causing a TLB miss.

4.) Examine the following code operating on three integer (word) arrays A, B, and C.

Assume the variable i is allocated in a register as is the constant ARRAY_SIZE and

neither requires accessing memory. Further assume the arrays are allocated contiguously

(B starts after A’s last element, etc.) and the right-hand side (RHS) of the assignment is

evaluated from left-to-right (A[i] is accessed first, then B[i], etc.)

for(i=0; i < ARRAY_SIZE; i++){

 A[i] = A[i] + B[i] + C[i];

}

a. (20 pts.) The worst-case scenario is that all three array translations map to the

same set. (Show the TLB address mapping.) What size would the arrays have

to be (ARRAY_SIZE=?) so that an access to A[i], B[i], and C[i] require

different translations but that the translations all map to the same D-TLB set

(show the start addresses for A[i], B[i], C[i] to support your answer…There

are probably many sizes that would work, pick the smallest. [Remember we

are using the configuration described before the previous problems and that

each array entry is an integer = word = 4-bytes.]

b. (10 pts.) After the 0th iteration completes which 2 of the three arrays will have

translations in the TLB. [Hint: Keep in mind that the D-TLB is 2-way set-

associative and uses LRU replacement.]

c. (12 pts.) Given the situation after the 0th iteration, how many D-TLB

(translation) misses will be incurred by the next iteration? [Hint: Take into

account the evaluation order and what the last values accessed would have

been from the previous iteration.]

d. (4 pts.) By simply rewriting/re-ordering the assignment statement, can you

reduce the number of D-TLB misses? Hint: remember we said the RHS is

evaluated from left to right and then assigned to the left hand side (LHS).

