CS 356 Cache Exercises Redekopp

Name: <u>Solutions</u>

Score: _____

Note: Attach all work to receive full credit

- 1.) (18 pts.) A processor has a 32-bit memory address space (i.e. 32-bit addresses). The memory is broken into blocks of 32 **bytes** each. The computer also has a cache capable of storing 16K **bytes**.
 - a.) How many blocks can the cache store? 16Kbytes / 32 bytes = 2^{14} / $2^5 = 2^9 = 512$ blocks
 - b.) Assuming the cache uses <u>direct-mapping</u>, how many bits are there in each of the TAG, BLOCK, and BYTE OFFSET fields fields of the address. Show your calculations.

Tag	Block	Byte Offset
A31-A14	A13-A5	A4-A0
18-bits	9-bits	5-bits
Remaining Bits	$512 \text{ blocks} = 2^9$	32 bytes per block
	=> 9 address bits	

c.) Assuming the cache uses a <u>4-way set-associative mapping</u>, how many bits are there in each of the TAG, SET and BYTE OFFSET fields of the address. Show your calculations.

Tag	Set	Byte Offset
A31-A12	A11-A5	A4-A0
20-bits	7-bits	5-bits
Remaining Bits	512 blocks / 4-ways=	32 bytes per block
	2 ⁷ blocks in a set	
	=> 7 address bits	

- A processor has a 36-bit memory address space (i.e. 36-bit addresses). The memory is broken into blocks of 64 bytes. The computer also has a cache capable of storing 1 Megabyte.
 - a.) How many blocks can the cache store? 1M / 64 bytes = $2^{20} / 2^6 = 2^{14} = 16K$ (16,384) blocks
 - b.) Assuming the cache uses <u>direct-mapping</u>, how many bits are there in each of the TAG, BLOCK, and BYTE OFFSET fields of the address. Show your calculations.

Tag	Block	Byte Offset	
A35-A20	A19-A6	A5-A0	
16-bits	14-bits	6-bits	
Remaining Bits	$16K \text{ blocks} = 2^{14}$	64 bytes per block	
	=> 14 address bits		

c.) Assuming the cache uses an <u>8-way set-associative mapping</u>, how many bits are there in each of the TAG, SET and BYTE OFFSET fields of the address. Show your calculations.

Tag	Set	Byte Offset
A35-A17	A16-A6	A5-A0
19-bits	11-bits	6-bits
Remaining Bits	16K blocks / 8-ways=	64 bytes per block
	2 ¹¹ blocks in a set	
	=> 11 address bits	

3.) Exercises 5.3.3 in CO&D, 4th Ed. page 550. Exercises 5.3.3 in CO&D, 4th Ed. page 550. You are asked to optimize a cache capable of storing 8 bytes total for the given references. There are three <u>direct-mapped</u> cache designs possible by varying the block size: C1 has one-byte blocks, C2 has two-byte blocks, and C3 has four-byte blocks. In terms of miss rate, which cache design is best? If the miss stall time is 25 cycles, and C1 has an access time of 2 cycles, C2 takes 3 cycles, and C3 takes 5 cycles, which is the best cache design? (Every access, hit or miss, requires an access to the cache)

Do this exercise only for access pattern a below. To make this easier for you, the address sequence has been converted to binary below. First do the address bit breakdown, then complete the table to answer the question.

Address Sequence a	LS 8-bits of address
1	0000 0001
134	1000 0110
212	1101 0100
1	0000 0001
135	1000 0111
213	1101 0101
162	1010 0010
161	1010 0001
2	0000 0010
44	0010 1100
41	0010 1001
221	1101 1101

Cache	Tag	Block	Byte Offset
C1	An-A3	A2-A0	None (no need)
C2	An-A3	A2-A1	A0
C3	An-A3	A2	A1-A0

Address	LS 8-bits	C1 Block	H/M	C2 Block	H/M	C3 Block	H/M
Sequence	of address						
1	0000 0001	1	Μ	0	Μ	0	Μ
134	1000 0110	6	Μ	3	Μ	1	Μ
212	1101 0100	4	Μ	2	Μ	1	Μ
1	0000 0001	1	Η	0	Н	0	Н
135	1000 0111	7	Μ	3	Н	1	Μ
213	1101 0101	5	Μ	2	Н	1	Μ
162	1010 0010	2	Μ	1	Μ	0	Μ
161	1010 0001	1	Μ	0	Μ	0	Н
2	0000 0010	2	Μ	1	Μ	0	Μ
44	0010 1100	4	Μ	2	Μ	1	Μ
41	0010 1001	1	Μ	0	Μ	0	Μ
221	1101 1101	5	Μ	2	Μ	1	Μ
Miss Rate		11/12			9/12		10/12
Time		2*12 + 11*25	299	3*12+9*25	251	5*12+10*25	310

4.) Exercises 5.3.5 in CO&D, 4th Ed. page 551. Consider a direct-mapped cache of 64 KB and a block size of 8 bytes. Generate a series of read requests (address sequence) that will have a lower miss rate on a 2 KB 2-way set associative cache with the same block size than this 64 KB direct mapped cache? Then generate a series of read requests (address sequence) that will have a lower or equal miss rate in the 64KB direct-mapped cache. To make answers more standard, use address that are as small as possible to make your case (i.e. make unneeded tag bits of your address 0 [you should just need to change a few of the LS tag bits] and make the byte offset portion [i.e. LSBs] 0 wherever possible).

Use a sequence of 4 addresses for each answer. Write out your address to 20-bits. (i.e. 0x00800)

Cache	Tag	Block or Set	Byte Offset
64 KB, direct,	An-A16	A15-A3	A2-A0
2 w/block			
2 KB, 2-way SA,	An-A3	A9-A3	A2-A0
2 w/block			

To have the 2KB, 2-way SA cache have a lower miss rate, we want to find addresses that will map to the same block in the larger direct mapped cache but to different sets in the 2 KB cache.

Address	Block in 64 KB	H/M	Set in 2 KB	H/M
0x00000	Block 0	Μ	Set $0 - Way 0$	Μ
0x10000	Block 0	Μ	Set 0 – Way 1	Μ
0x00000	Block 0	Μ	Set 0 – Way 0	Н

To have the 64KB, direct mapped cache have a lower miss rate, we want to find addresses that will map to different blocks in the larger direct mapped cache but to the same set in the 2 KB cache.

Address	Block in 64 KB	H/M	Set in 2 KB	H/M
0x00000	Block 0	Μ	Set $0 - Way 0$	Μ
0x00400	Block $0x80 = 128$	Μ	Set 0 – Way 1	Μ
0x00800	Block $0x100 = 256$	Μ	Set $0 - Way 0$	M / evict 00000
0x00000	Block 0	Н	Set 0	Μ