CS 356 Cache Exercises Redekopp

Name: _

Score: _____

Enter answers on Blackboard

- 1.) (18 pts.) A processor has a 32-bit memory address space (i.e. 32-bit addresses). The memory is broken into blocks of 32 **bytes** each. The computer also has a cache capable of storing 16K **bytes**.
 - a.) How many blocks can the cache store?
 - b.) Assuming the cache uses <u>direct-mapping</u>, break the address into TAG, BLOCK, and BYTE OFFSET fields (show which address bits correspond to which field). Show your calculations.

Tag	Block	Byte Offset

c.) Assuming the cache uses a <u>4-way set-associative mapping</u>, break the address into TAG, BLOCK, and WORD fields (show which address bits correspond to which field). Show your calculations.

Tag	Set	Byte Offset

- (18 pts.) A processor has a 36-bit memory address space (i.e. 36-bit addresses). The memory is broken into blocks of 64 bytes each. The computer also has a cache capable of storing 1 Megabyte.
 - a.) How many blocks can the cache store?
 - b.) Assuming the cache uses <u>direct-mapping</u>, break the address into TAG, BLOCK, and BYTE OFFSET fields (show which address bits correspond to which field). Show your calculations.
 - c.) Assuming the cache uses a **<u>8-way set-associative mapping</u>**, break the address into TAG, BLOCK, and BYTE OFFSET fields (show which address bits correspond to which field). Show your calculations.

3.) (20 pts.) Exercises 5.3.3 in CO&D, 4th Ed. page 550. You are asked to optimize a cache capable of storing 8 bytes total for the given references. There are three <u>direct-mapped</u> cache designs possible by varying the block size: C1 has one-byte blocks, C2 has two-byte blocks, and C3 has four-byte blocks. In terms of miss rate, which cache design is best? If the miss stall time is 25 cycles, and C1 has an access time of 2 cycles, C2 takes 3 cycles, and C3 takes 5 cycles, which is the best cache design? (Every access, hit or miss, requires an access to the cache)

Do this exercise only for access pattern a below. To make this easier for you, the address sequence has been converted to binary below. First do the address bit breakdown, then complete the table to answer the question.

Address	LS 8-bits	C1 Block	H/M	C2 Block	H/M	C3 Block	H/M
Sequence	of address	Answer		Answer		Answer	
		[0-7]		[0-3]		[0-1]	
1	0000 0001						
134	1000 0110						
212	1101 0100						
1	0000 0001						
135	1000 0111						
213	1101 0101						
162	1010 0010						
161	1010 0001						
2	0000 0010						
44	0010 1100						
41	0010 1001						
221	1101 1101						
Miss Rate			/12		/12		/12
Time		2*12 +	=	3*12+	=	5*12+	=

4.) (20 pts.) Exercises 5.3.5 in CO&D, 4th Ed. page 551. Consider a direct-mapped cache of 64 KB and a block size of 8 bytes. Generate a series of read requests (address sequence) that will have a lower miss rate on a 2 KB 2-way set associative cache with the same block size than this 64 KB direct mapped cache? Then generate a series of read requests (address sequence) that will have a lower miss rate in the 64KB direct-mapped cache. To make answers more standard, use address that are as small as possible to make your case (i.e. make unneeded tag bits of your address 0 [you should just need to change a few of the LS tag bits] and make the byte offset portion [i.e. LSBs] 0 wherever possible).

First do the address breakdown for each cache:

Cache	Tag (A19-A?)	Block or Set	Byte Offset
64 KB, direct,			
2 w/block			
2 KB, 2-way SA,			
2 w/block			

For the first question, find a 3 address sequence. Write out your address to 20-bits. (i.e. 0x00800)

	20-bit address in hex.
1	
2	
3	

For the second question, find a 4 address sequence. Write out your address to 20-bits. (i.e. 0x00800)

	20-bit address in hex.
1	
2	
3	
4	