
CSCI 356 Fall 2018 Project 5:
Understanding Cache Memories
Due: Monday, Nov. 5, 11:59PM

This lab will help you understand the impact that cache memories can have on the performance of your C
programs.

In this lab, you will write a small C (not C++) program (about 200-300 lines) that simulates the behavior of
a cache memory.

You will find the starting point in your repo.

1 Description

1.1 Reference Trace Files

The traces subdirectory contains a collection of reference trace files that we will use to evaluate the
correctness of the cache simulator you will write. The trace files are generated by a Linux program called
valgrind. For example, typing

$ valgrind --log-fd=1 --tool=lackey -v --trace-mem=yes ls -l

on the command line runs the executable program “ls -l”, captures a trace of each of its memory accesses
in the order they occur, and prints them on stdout.

Valgrind memory traces have the following form:

I 0400d7d4,8
M 0421c7f0,4
L 04f6b868,8
S 7ff0005c8,8

Each line denotes one or two memory accesses. The format of each line is

[space]operation address,size

The operation field denotes the type of memory access: “I” denotes an instruction load, “L” a data load,
“S” a data store, and “M” a data modify (i.e., a data load followed by a data store). There is never a space

1

before each “I”. There is always a space before each “M”, “L”, and “S”. The address field specifies a 64-bit
hexadecimal memory address. The size field specifies the number of bytes accessed by the operation.

1.2 Writing a Cache Simulator

In this assignment, you will write a cache simulator in csim.c that takes a valgrind memory trace as
input, simulates the hit/miss behavior of a cache memory on this trace, and outputs the total number of hits,
misses, and evictions.

We have provided you with the binary executable of a reference cache simulator, called csim-ref, that
simulates the behavior of a cache with arbitrary size and associativity on a valgrind trace file. It uses
both the LRU (least-recently used) replacement policy and FIFO (First-in First-out), when choosing which
cache line to evict, as per the usage of -F and -L flags, as appropriate.

The reference simulator takes the following command-line arguments:

Usage: ./csim-ref [-hv] -s <s> -E <E> -b -t <tracefile> (-L|-F)

• -h: Optional help flag that prints usage info

• -v: Optional verbose flag that displays trace info

• -s <s>: Number of set index bits (S = 2s is the number of sets)

• -E <E>: Associativity (number of lines per set)

• -b : Number of block bits (B = 2b is the block size)

• -t <tracefile>: Name of the valgrind trace to replay

• -L: Set the cache eviction policy to be LRU.

• -F: Set the cache eviction policy to be FIFO.

The command-line arguments are based on the notation (s, E, and b) from page 617 of the CS:APP3e
textbook. For example:

linux> ./csim-ref -s 4 -E 1 -b 4 -L -t traces/yi.trace
hits:4 misses:5 evictions:3

The same example in verbose mode:

linux> ./csim-ref -v -s 4 -E 1 -b 4 -L -t traces/yi.trace
L 10,1 miss
M 20,1 miss hit
L 22,1 hit
S 18,1 hit

2

L 110,1 miss eviction
L 210,1 miss eviction
M 12,1 miss eviction hit
hits:4 misses:5 evictions:3

Your job for this project is to fill in the csim.c file so that it takes the same command line arguments and
produces the identical output as the reference simulator. Notice that this file is almost completely empty.
You’ll need to write it from scratch.

Programming Rules

• Include your name and USC username in the header comment for csim.c.

• Your csim.c file must compile without warnings in order to receive credit.

• Your simulator must work correctly for arbitrary s, E, and b. This means that you will need to
allocate storage for your simulator’s data structures using the malloc function. Type “man malloc”
for information about this function.

• Your simulator must accurately use both the FIFO and LRU cache eviction policies, as determined by
the command line parameters.

• For this lab, we are interested only in data cache performance, so your simulator should ignore all
instruction cache accesses (lines starting with “I”). Recall that valgrind always puts “I” in the first
column (with no preceding space), and “M”, “L”, and “S” in the second column (with a preceding
space). This may help you parse the trace.

• To receive credit for this project, you must call the function printSummary, with the total number
of hits, misses, and evictions, at the end of your main function:

printSummary(hit_count, miss_count, eviction_count);

• For this lab, you should assume that memory accesses are aligned properly, such that a single memory
access never crosses block boundaries. By making this assumption, you can ignore the request sizes
in the valgrind traces.

• You may only use C code (no C++) that will compile with gcc and the -std=c99 flags.

3

2 Evaluation

This section describes how your work will be evaluated. The full score for this lab is 54 points.

We will run your cache simulator using different cache parameters and traces. There are 16 test cases, most
worth 3 points, except for two cases, which are each worth 6 points; 8 tests will be run for each cache
replacement policy. The LRU test cases are as follows:

linux> ./csim -s 1 -E 1 -b 1 -L -t traces/yi2.trace
linux> ./csim -s 4 -E 2 -b 4 -L -t traces/yi.trace
linux> ./csim -s 2 -E 1 -b 4 -L -t traces/dave.trace
linux> ./csim -s 2 -E 1 -b 3 -L -t traces/trans.trace
linux> ./csim -s 2 -E 2 -b 3 -L -t traces/trans.trace
linux> ./csim -s 2 -E 4 -b 3 -L -t traces/trans.trace
linux> ./csim -s 5 -E 1 -b 5 -L -t traces/trans.trace
linux> ./csim -s 5 -E 1 -b 5 -L -t traces/long.trace

The FIFO test cases are as follows:

linux> ./csim -s 4 -E 2 -b 4 -F -t traces/fifo_s1.trace
linux> ./csim -s 4 -E 2 -b 4 -F -t traces/fifo_s2.trace
linux> ./csim -s 4 -E 4 -b 4 -F -t traces/fifo_s3.trace
linux> ./csim -s 5 -E 2 -b 2 -F -t traces/fifo_m1.trace
linux> ./csim -s 3 -E 4 -b 2 -F -t traces/fifo_m1.trace
linux> ./csim -s 5 -E 2 -b 2 -F -t traces/fifo_m2.trace
linux> ./csim -s 3 -E 4 -b 2 -F -t traces/fifo_m2.trace
linux> ./csim -s 4 -E 2 -b 4 -F -t traces/fifo_l.trace

You can use the reference simulator csim-ref to obtain the correct answer for each of these test cases.
During debugging, use the -v option for a detailed record of each hit and miss.

For each test case, outputting the correct number of cache hits, misses and evictions will give you full credit
for that test case. Each of your reported number of hits, misses and evictions is worth 1/3 of the credit
for that test case. That is, if a particular test case is worth 3 points, and your simulator outputs the correct
number of hits and misses, but reports the wrong number of evictions, then you will earn 2 points.

3 Working on the Lab

We have provided you with an autograding program, called test-csim, that tests the correctness of your
cache simulator on the reference traces. Be sure to compile your simulator before running the test. Running
test-csim on a correct submission would produce the following output:

4

linux> make
linux> ./test-csim
EP: LRU Your simulator Reference simulator
Points (s,E,b) Hits Misses Evicts Hits Misses Evicts

3 (1,1,1) 9 8 6 9 8 6 traces/yi2.trace
3 (4,2,4) 4 5 2 4 5 2 traces/yi.trace
3 (2,1,4) 2 3 1 2 3 1 traces/dave.trace
3 (2,1,3) 167 71 67 167 71 67 traces/trans.trace
3 (2,2,3) 201 37 29 201 37 29 traces/trans.trace
3 (2,4,3) 212 26 10 212 26 10 traces/trans.trace
3 (5,1,5) 231 7 0 231 7 0 traces/trans.trace
6 (5,1,5) 265189 21775 21743 265189 21775 21743 traces/long.trace

27

EP: FIFO Your simulator Reference simulator
Points (s,E,b) Hits Misses Evicts Hits Misses Evicts

3 (4,2,4) 7 5 2 7 5 2 traces/fifo_s1.trace
3 (4,2,4) 11 7 3 11 7 3 traces/fifo_s2.trace
3 (4,4,4) 6 11 7 6 11 7 traces/fifo_s3.trace
3 (5,2,2) 59 354 298 59 354 298 traces/fifo_m1.trace
3 (3,4,2) 51 362 330 51 362 330 traces/fifo_m1.trace
3 (5,2,2) 191 188 142 191 188 142 traces/fifo_m2.trace
3 (3,4,2) 164 215 184 164 215 184 traces/fifo_m2.trace
6 (4,2,4) 263447 28255 28223 263447 28255 28223 traces/fifo_l.trace

27

TEST_CSIM_RESULTS=54

For each test, test-csim shows the number of points you earned, the cache parameters, the input trace
file, and a comparison of the results from your simulator and the reference simulator.

Here are some hints and suggestions for working on this:

• Do your initial debugging on the small traces, such as traces/dave.trace.

• The reference simulator takes an optional -v argument that enables verbose output, displaying the
hits, misses, and evictions that occur as a result of each memory access. You are not required to
implement this feature in your csim.c code, but we strongly recommend that you do so. It will
help you debug by allowing you to directly compare the behavior of your simulator with the reference
simulator on the reference trace files.

• We recommend that you use the getopt function to parse your command line arguments. You’ll
need the following header files:

#include <getopt.h>
#include <stdlib.h>
#include <unistd.h>

You are allowed to search the Internet for getopt examples. Be sure to follow the protocol for citing
your sources described in the syllabus.

5

• We will explicitly allow you to search for Internet documentation for the following C library functions
which will be helpful. Be sure to follow the protocol for citing your sources described in the syllabus.

– fopen()/fclose()

– fgets()

– fscanf() or sscanf() : Note that sscanf requires the format string to contain the expected format.
For example, if you wanted to parse two ints separated by a comma and a space you’d have to
use a format string like: “%d, %d” that contains the expected placeholder(s) in the expected
location(s).

• Each data load (L) or store (S) operation can cause at most one cache miss. The data modify operation
(M) is treated as a load followed by a store to the same address. Thus, an M operation can result in
two cache hits, or a miss and a hit plus a possible eviction.

6

