CS 104 (Spring 2014) — Final Exam
05,/09/2014

Goobp Luck

Your Name, USC username, and Student ID:

This exam has 8 pages and 8 questions. If yours does not, please contact us immediately. Please read and reread each
question carefully before trying to solve it.

In your solutions, you should try hard to write mostly correct C++ unless explicitly told otherwise. Minor syntax errors
will (at most) lose small numbers of points, so don’t fret too much about those; but you should also demonstrate a mastery
of most C++ syntax. Unless otherwise noted, do not worry about #include directives or using namespace std.

You don’t need to duplicate the code we’re giving you — in response to questions, just give the piece of code to add to
what we are giving you.

Some of the questions may become easier to solve if you use one or more of the following: Hashtables, Balanced Search
Trees, Priority Queues, Sorting Algorithms. Unless otherwise specified, you may assume that you have implementations of
these, and refer to them using the STL syntax or the names we used in class. As a refresher, here is the basic STL syntax
(a little modified for simplicity in some cases).

Hashtable: Write unordered map <keyType, valueType>. You may assume that all three standard operations take con-
stant time.

Balanced Search Tree: Write map <keyType, valueType>. You may assume that all three standard operations take time
O(logn), and that a linear-time iterator is provided.

Priority Queues: Write priority_queue <T>. That’s not quite the C++ syntax, but we’ll pretend as much for now.

Sorting: Write sort(a,left,right) to sort an array a between left and right (inclusive) in ascending order. This is not
exactly STL syntax, but cleaner for now. You may assume that it runs in time O(nlogn), where n = right — left, and
is stable. If a is an array of items of type T, sort will use the < operator of T to sort, unless you explicitly pass as a
fourth argument a comparator object or function.

For some questions, we may explicitly not want you to use these functionalities. For those, we will say “No STL” at the
beginning of the problem. That means that if you want Hashtables, Search Trees, Priority Queues, or Sorting Algorithms,
you have to give us an implementation. You will still be allowed to use sequence containers and other adapters, though
(including vector), unless explicitly specified.

Question 1 2 3 4 5 6 7 8 Total
Points possible 10 10 12 12 12 16 12 16 100
Points

(1) [10 points]
In class, we saw that Dijkstra’s Algorithm correctly finds a shortest s-t path in weighted graphs so long as all edge costs
are non-negative, ¢, > 0 for all e. Draw an example graph with one or more negative edge weights on which Dijkstra’s

Algorithm will fail to find a shortest s-t path. (Hint: there are some pretty easy examples.) Explain what the actual
shortest path would be, and which path Dijkstra’s Algorithm finds.

(2) [10 points]
Below, you are given a correct Red-Black tree, in which red nodes are shown as shaded diamonds, while black nodes are
shown as empty circles. Give the final tree obtained from inserting the key ‘8 into this tree, after the insert function
correctly restores the Red-Black Tree properties. It is not necessary to show intermediate steps, but if your final answer
is wrong, you will get partial credit if earlier steps are correct.

(3) [12 points]
An education researcher has the hypothesis that higher education only reinforces existing education inequalities, rather
than making students catch up and excel. More specifically, he makes the strong hypothesis that the student with the
highest SAT score coming in will have the highest GPA upon graduation, the student with the second-highest SAT
score will have the second-highest GPA, and so on. To be consistent, he hypothesizes that students coming in with the
same SAT score will also have the exact same GPA.

He would like you to write a program to test his theory on data sets. Each data set will contain students sorted
alphabetically, with their GPA and SAT score given. Your program should determine whether his hypothesis is true.
Add your code to the skeleton on the next page.

Because he expects to run on several large data sets, your algorithm must run in time O(nlogn) for data sets of n
students.

struct StudentRecord {
string name; // name of the student
int SAT; // SAT score
double GPA; // GPA at graduation

// feel free to add functionality here if you need it.

};

int main (int nargs, charx* args) {
int n; // number of students in data set
StudentRecord *students;

read_data (args[1], &n, students);
/* this function reads all the data correctly from the file and puts them in the array ‘students’.
When the function returns, the students in the array will be sorted by name.
n will be the size of the array. No two students will have the same name. */

// Your code goes here. You should output "Yes" if the hypothesis is true, and "No" otherwise.

return O;

}

(4) [12 points]
You put k keys into a hash table with m hash buckets. We assume that the hash function is good enough that you
can treat the destination of each key as independently uniformly random. What is the probability that there are no
collisions at all, i.e., that all keys end up in different positions of the array? Show your work as you derive your answer.

(5) [12 points]
We have a Bloom Filter with an array of 10 elements (the elements of the set are integers), and using three hash

functions
hi(x) = (72 +4) mod 10,
ha(x) = (224 1) mod 10,
hs(z) = (5z+ 3) mod 10.

We execute the sequence of operations given below. What does the program output? Which of the answers are false
positives (the Bloom filter says “Yes”, even though the correct answer is “No”)? Which are false negatives (the Bloom
filter says “No”, even though the correct answer is “Yes”)? If your final answer is incorrect, you may get more partial
credit if you show enough work for us to isolate the mistake.

BloomFilterSet<int> bf (10);

bf.add (0);

bf.add (1);

bf.add (2);

bf.add (8);

// Show us what the Bloom Filter’s Array looks like at this point.
if (bf.contains (2)) std::cout << "2\n";

if (bf.contains (3)) std::cout << "3\n";

if (bf.contains (4)) std::cout << "4\n";

if (bf.contains (9)) std::cout << "9\n";

(6) [10+6=16 points]
Implement and analyze lookup of keys in general (b,2b — 1) trees. Remember that these are trees in which each node
has at least b and at most 2b — 1 children. Other than that, they are exactly like 2-3 trees, which are the special
case b = 2. You are already given the class BTreeNode below, which only has integers keys, and no values (to keep it
simple). The child pointers will be NULL when a certain child does not exist. You get to assume that your function will
be passed the root of a correct (b, 2b — 1)-tree and a key to search for. Your analysis in big-O/€/© notation should tell
us how long the lookup function takes, as a function of n (the number of keys in the tree) and b.

(a) Give us your implementation of lookup.

#define b 10000 // Your code should work also if someone gives b another value
struct BTreeNode {
int ¢; // number of children this node actually has.
// Will always be between b and 2b-1.
int k [2b-2]; // the sorted array of keys in the node.
BTreeNode *child[2b-1]; // the ordered array of children.
};

bool lookup (BTreeNode *root, int key)
/* This is the function you implement.
It should return true if the key exists in the tree, and false otherwise.
You may define helper functions if you want. */

(b) Analyze the running time of your implementation in big-O/€/© notation.

(7) [12 points]
You have a correctly implemented Max-Heap class (indices starting at 1), which provides the two following helper
functions (in addition to insert, remove, peek):

(a) trickleUp (int i) (David’s lecture) a.k.a. insert (int i) (Mark’s lecture) takes the element at position 4 and
keeps swapping it with its parent (and grandparent etc.) until it is no larger than the parent at the time.

(b) trickleDown (int i) (David’s lecture) a.k.a. heapify (int i) (Mark’s lecture) takes the element at position
i and keeps swapping it with the larger of its children (and grandchildren etc.) until it is no smaller than both
children.

Suppose that you get an instance whose array elements are not in correct heap order, i.e., the heap property does not
hold yet. You want to establish the correct arrangement, by using the two helper functions given above. Which of
the following two alternatives do this correctly? Explain why they are correct or incorrect. For incorrect ones, give an
example of an initial heap which is not correctly processed, and explain what happens when the incorrect variant is
executed on it.

Heap h;

[y

// Variant
for (int i

1; i <= n; i1 ++) h.trickleUp (i);

// Variant 2;
for (int i = 1; i <= n; i ++) h.trickleDown (i);

(8) [16 points]
In class, we saw Tries and how to insert and look up words in them. Here, you will implement deletion from a trie. We
will assume that our strings only consist of lower-case letters.

A friend has already written the following piece of code. She is only sharing the header file with you, but since she’s a
Trojan, you're sure that it’s all correctly implemented.

struct TrieNode {
bool isInSet; // true if there is a word ending at this node.
TrieNode *parent; // the parent in the trie, NULL if the node is the root.
TrieNode *child[26]; // the (up to) 26 children for the letters. NULL if there is no such child.

int convert (char letter) // turns a letter into its index in the child array
{ return (int) (letter - ’a’); }

bool isLeaf () { // returns whether the node is a leaf
for (int i = 0; i < 26; 1 ++)

if (child[i] !'= NULL) return false;

return true;

}

};

class InsertOnlyTrie {
protected:
TrieNode *root;

public:
InsertOnlyTrie () { root = NULL; }
“InsertOnlyTrie (); // correctly implemented destructor

void add (string s);
// adds the string to the trie correctly. Is already implemented.

TrieNode *lookup (string s);
/* returns the pointer to the node at which the search for s terminates in the trie.
Is already implemented. If s is not in the trie, returns NULL. */

};

On the next page, you should use your friend’s class to build a “real” Trie class that also provides the following public
function.

void remove (string s);
/* If s is not in the trie, the function should not do anything.
Otherwise, it should remove s from the trie as though it had never been added. */

Remember that you cannot alter your friend’s code, so you must find a suitable way to build the Trie class. For full
credit, your solution must not leak any memory.

// your code goes here

